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Fig. 2. Highly porous medium consisting of disperse spheres with inter-spherical spacing greater than
five sphere diameters.

Ž .and even Eq. 59 . The latter equation is a subject in the study by Travkin and
w xKushch 59 dealing with the Stokes flow and heat transport in regular and

irregular conglomerates of spherical particles, Fig. 3, where a rigorous solution
applied to porous-media problems in VAT statements.

Few equations of heat transfer with constant conductivities in porous media will
depict the benefits of the specific morphologies that are now being used to deal
with these problems. To develop a one-dimensional steady-state fluid phase equa-
tion of convective heat transfer in porous media, one needs to start from the
equation in deviation form

1 ª˜ ˜ ˆ ˆ² : ² :m U= T s = y T u q a = ? T dsˆ f Hi f f i f fDV Sw

² :a mªf ˆ Ž .q = T ? ds q S , 66H f TfŽ .DV D cS pw f

or the full value equation
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Fig. 3. Randomized series of spherical bead screens } one-dimensional globular morphology.

˜ ˜ ˆ ˜² : ² : ² :m U= T s = y T u q a == m Tˆ f ž /i f f i f f

² :1 a mª ªf Ž .q a = ? T ds q = T ? ds q S . 67Hf f f TfŽ .DV DV D cS pw f

w xIt is interesting to note that Hsu and Cheng 32 dropped the morpho-convective
term

² :D = y u uˆ ˆ ff i i

in the averaged Navier]Stokes momentum equation and at the same time acquired
the analogous term

ˆ² :c = y T û fp fD f f i

w xin the averaged heat-transfer equation. To close this term, Hsu and Cheng 32
used several assumptions to comply with the closure schemes developed by Zanotti

w x w xand Carbonell 1 and Carbonell and Whitaker 19 . Numerical results were
obtained using experimental measurements of the bulk stagnant conductivity, k ,d
and the tensorial quantity of the porous medium bulk thermal dispersivity, k.
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When the coefficient of thermal conductivity, k , is a constant value, the steadyf
state conduction regime is described by

k kª ªf f2 ˜² : ² : Ž .k = m T q = ? T ds q = T ? ds q m S s 0, 68H Hž /f f f f TfDV DVS Sw w

or written in fluctuation variables it is

1 kª ªfˆ ˆ ² : Ž .k = ? T ds q = T ? ds q m S s 0. 69H Hf f f TfDV DVS Sw w

The one-dimensional version of the equations, without a source in a motionless
matrix in Cartesian coordinates, are

˜ T  1 1 Tª ªf fˆ² : Ž .m q T ds q ? ds s 0, 70H Hfx x x DV DV xS S iw w

or

ˆ 1 1 Tª ªfˆ Ž .T ds q ? ds s 0, 71H Hfx DV DV xS S iw w

or

2  1 1 Tª ªf˜² : Ž .m T q T ds q ? ds s 0. 72H Hf f2 x DV DV xx S S iw w

Meanwhile, in the solid phase with constant k , the equation yields the same forms

� 4  T  1 1 Tª ªs ss ˆ² : Ž .s q T ds q ? ds s 0, 73H Hs 1 1x x x DV DV xS S iw w

or for the fluctuating variable

ˆ 1 1 Tª ªsˆ Ž .T ds q ? ds s 0. 74H Hs 1 1x DV DV xS S iw w

w xTravkin and Catton 4,16,17 suggested that the integral heat-transfer terms in
Ž . Ž .Eqs. 71 ] 73 be closed in a natural way by III-type heat-transfer law. The second

integral term reflects the changing averaged surface temperature along the x
Ž . Ž .coordinate. Eqs. 72 and 73 can be treated using heat-transfer correlations for

Ž .the heat-exchange integral term the last term . Regular dilute arrangements of
pores, spherical particles or cylinders have been studied much more than random
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w xmorphologies. Using separate element or ‘cell’ modeling methods 50,58 to finding
the interface temperature field allows one to close the second-‘surface’ diffusion

Ž . Ž . Ž .integral terms in Eqs. 72 and 73 along with Eq. 68 .
Many forms of the energy equation are used in the analysis of transport

phenomena in porous media. The primary difference between such equations and
those resulting from a more rigorous development based on VAT are certain
additional terms. The best way to evaluate the need for these additional more
complex terms is to obtain an exact mathematical solution and compare the results
with calculations using the VAT equations. This will clearly display the need for
using the more complex VAT mathematical statements.

Consider a two-phase heterogeneous medium consisting of an isotropic continu-
Ž . Žous solid or fluid matrix and an isotropic discontinuous phase spherical particles

. ² :or pores . The volume fraction of matrix, or f-phase, is m s m s DV rDV , thef f
volume fraction of fillet, or s-phase, is m s 1 y m s DV rDV , where DV ss f s

ŽDV q DV is the volume of the REV. The constant properties phase conductivi-f s
. Ž .ties, k and k , stationary time-independent heat conduction differential equa-f s

tions for T and T , the local phase temperatures,f s

k = 2T s 0, k = 2T s 0,f f s s

Ž .with the IVth kind of interfacial f y s thermal boundary conditions. No internal
heat sources are present inside the composite sample so that the temperature field
is determined by the boundary conditions at the external surface of the sample.
After correct formulation of these conditions, the problem is completely stated and
has a unique solution.

Two ways to realize a solution to this problem were compared by Travkin and
w xKushch 60 . The first is the conventional way of replacing the actual composite

medium by an equivalent homogeneous medium with an effective thermal conduc-
Ž² : .tivity coefficient, k s k s , k , k , assuming one knows how to obtain ore f f f s

calculate it. The exact effective thermal coefficient was obtained using DNM based
on the mathematical theory of globular morphology multiphase fields developed by

Ž w x.Kushch see, for example 61]63 .
The second way is to solve the problem using the VAT two-equation, three-term

Ž . Ž . Ž w x.integro-differential equations, Eqs. 70 and 73 see also, for example 4,20 . To
evaluate and compare solutions to these equations with the DNM results, one
needs to know the local solution characteristics, the averaged characteristics over
the both phases in each cell and, in this case, the additional morpho-diffusive
terms.

An infinite homogeneous isotropic medium containing a three-dimensional array
of spherical particles is chosen for analysis. The particles are arranged so that their
centers lie at the nodes of a simple cubic lattice with period a. The temperature
field in this heterogeneous medium is caused by a constant heat flux, Q , pre-z
scribed at the sample boundaries, which, due to the absence of heat sources, leads

² :to the equality of averaged internal heat flux, q s Q .z
The model composite medium consists of the three regions shown in Fig. 4. The
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Fig. 4. Model of two-phase medium with variable volume fraction of disperse phase.

half-space lying above the A]A plane has a volume content of the disperse phase
m s m and for half-space below the B]B plane m s m . To define thes A s B
problem, let m ) m . The third part is the composite layer between the planeA B
boundaries A]A and B]B containing N double periodic lattices of spheres
Ž .screens with changing diameters.

Ž .The normalized solution of both models VAT and DNM for the case of
linearly-changing porosity between A]A and B]B and with effective conductivity
coefficients of k s 0, 0.2, 1, 10 and 10 000, respectively, showed practicallye f f

Ž y3 .negligible difference - 10 supposedly because of numerical error accumula-
w x Ž . Ž .tion 60 . Solutions of the VAT equations, Eqs. 70 and 73 , for the composite

with varying volume content of disperse phase with accurate DNM closure of the
micro model VAT integro-differential terms were obtained implicitly, meaning that
each term was calculated independently using the results of DNM calculations.

The coincidence of the results of the exact calculation of the two-equation,
Ž . Ž .three-term energy transport VAT model, Eqs. 70 and 73 , with the exact DNM

solution and the one-temperature effective coefficient model for heterogeneous
media with non-constant spatial morphology clearly demonstrates the need for
using all the terms in the VAT equations. The need for the morpho-diffusive terms
in the energy equation are further demonstrated by noting that their magnitudes
are all of the same order.




