
0.0.1 EFFECTIVE DIFFUSIVE TRANSPORT COEFFICIENTMOD-
ELING

Determination effective transport coefficients for a heterogeneous (and porous)
media has received considerable attention by researchers who are studying the
transport through a porous media. Careful notation procedures are necessary
when the turbulent thermal dispersivity is being studied. To evaluate experi-
ment it is typical to use solution obtained by moment method or analytically.
This was done by many researchers.

One of the methods of closure of mathematical models of diffusion processes
in a heterogeneous media is the quasihomogeneous method. In this case, the
transfer process is modeled as an ideal continuum with homogeneous effective
transport characteristics instead of the real heterogeneous characteristics of a
porous medium. This method of closure of the diffusive terms in the heat and
mass diffusion equations results in certain limitations: (a) the two-phase medium
components are without fluctuations of the type bT , bc in each of the phases; and
(b) the transfer coefficients being constant in each of the phases (Khoroshun,
[68,69]) results in reducing them to additional algebraic equations. These equa-
tions relate the unknown averaged diffusion flows in each of the phases in the
following form D→
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Here, unlike the work of Khoroshun [68], Kudinov and Moyzes [70] and
Hadley [71], C

+
and C

−
are the values of the concentrations (or temperatures)

at both sides of the phase transition surface ∂Sw (they do not have to be equal),
Kf
c(ij), K

s
c(ij) are the transfer coefficient tensors in each of the phases, and K

∗
c(ij)

is the effective diffusion coefficient. Thus, at least in this case, the problem of
closure has been reduced to findingK∗c(ij)and integrals across the interface of the
difference of the values of limits of admixture concentrations (or temperature)
at both its sides. For temperature fields, the above relationships will be similar
( neglecting the heat resistance of the interface boundary)
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Applying the closure relation, for example
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yields the effective stagnant coefficient
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that represents the lower bound of the effective stagnant conductivity for a
two-phase material from the known boundaries of Hashin-Shtrikman (see, for
example, Beran [72], Kudinov and Moyzes [70]) for equal volume fraction of
phases. Other closure equations for calculating the stagnant effective conduc-
tivity are found in work by Hadley [71], and by Kudinov and Moyzes [70]. The
quasi-homogeneous approach has several defects:
a) the basis for the quasi-homogeneous equations is in question, b) the local

fluctuation values, as well as inhomogeneity and dispersivity of the medium, are
neglected, and c) the interdependence of the correlated coefficients and arbitrary
adjustment to fit data significantly reduce the generality of the results.
Finding effective parameters for heterogeneous medium using a perturbation

expansion to derive the higher-order exact bounds of a composite‘s properties
has many difficulties. Torquato‘s approach (see, for example, Torquato et al.,
[38], Miller and Torquato, [39], etc.) is an application of the perturbation ex-
pansion method to a composite medium using advanced statistical information
about medium morphology based on the n-point probability functions. The
difficulty in this approach is in the determination of the n-point morphological
characteristics that should be considered. Torquato [73] provided a compar-
ison of his predictions with experimental data of Turner [74] for a medium
(composite) with periodic and randomly located spherical inclusions. Excellent
agreement was obtained for regular morphology. However, for a composite with
a random disperse phase spatial distribution, the calculated values were not in
good agreement with the experimental data of Turner. The two first terms of
the perturbation expansion and 3-point probability distribution functions were
used in the simulation.
Rather comprehensive analysis of the same problem is presented by Sangani

and Yao [75] where the random microstructure of the composite was approxi-
mated by a spatially periodic array with a unit cell containing N (16) arbitrary
placed inclusions. In other words, the spatial model consists N periodic lattices
of inclusions. Their mutual position is generated in a special way so that the
radial distribution function is in a good agreement with solution of the Percus-
Yevick equation. This solution was used then to obtain the Pade approximations
and higher-order bounds of the effective conductivity, Milton‘s numbers as well
as the sixth and eighth-order bounds. It was shown, that this approach gives
better agreement with the Turner‘s [74] data than Torquato‘s formulae because
more morphological (essentially stochastic) information was involved into con-
sideration and the rigorous solution of the boundary-value problem
Effective coefficients, usually thought to be the universal solution to most

heterogeneous media problems, are not easily described when applying math-
ematical model like the VAT. The “heterogeneous“ terms in the momentum
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equation yields, by the overall representation of diffusive and “diffusion-like“
terms
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Here the variables of velocity and viscosity coefficient are taken in a form
suitable for both laminar and turbulent flow regimes. From this expression
the thought effective coefficient Km,eff is not seen to be a constant value, but
rather a complex nonlinear function explicitly dependent on other functions
and variables. The additional friction and drag resistance terms in equation
still need to be closed in some way.
For problems with a constant bulk viscosity coefficient (Km= constant) the

second term in this relation vanishes and the whole problem essentially assumes
the role of evaluating the influence on the momentum due to dispersion by irreg-
ularities of the porous medium. Diffusion-dispersion effects realized through the
second derivative terms and relaxation terms in the fluid phase mass transport
equation can be expressed,
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where the first and last terms resemble the effective thermal conductivity
coefficient for each phase, using constant coefficients, see Nozad et al. [42].
Interpretation of this equation as one that to be the equation for effective co-
efficient calculation meaning simply by adding the one more equation to the
whatever problem was stated at the beginning.
Considering the effective coefficient problem as the cornerstone issue in the

heterogeneous media transport, one needs to accommodate the reasoning that
the absolute majority of problem stated and studies include the following as-
sumptions: 1) a composite is a two-phase media consisting of a continuous
matrix phase and embedded inclusions of disperse phase; 2) phase materials
are homogeneous and isotropic, their properties are temperature-independent;
3) disperse phase consists of the equally sized spherical particles, uniformly
distributed within a matrix phase. As a result, the composite is assumed to
be macroscopically isotropic; 4) interfaces have the conditions of conventional
boundary transport laws, for example, perfect thermal contact is supposed to
be maintained; 5) the external (heat) flux is supposed to be time-independent
and macroscopically uniform, etc.
At this time it can be concluded that the two-phase heat conductivity ef-

fective coefficient problem for the periodic morphologies is practically resolved
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( at least in the scientific sense), whereas, for disordered, random morphologies
of composites it is far from the resolved even when the above assumptions are
appropriate.
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