
Proceedings of 
2001 ASME International Mechanical Engineering Congress and Exposition 

November 11-16, 2001, New York, NY 

IMECE01-2882 
STATISTICS OF MATHEMATICAL TWO-SCALE CLOSURE OF MOMENTUM,  HEAT AND CHARGE TRANSPORT 

PROBLEMS WITH STOCHASTIC ORIENTATION OF POROUS MEDIUM CAPILLARIES 

V. S. Travkin, K. Hu, I. Catton 
Department of Mechanical and Aerospace Engineering 

University of California, Los Angeles 
Los Angeles, CA 90095 

Proceedings of 
2001 ASME International Mechanical Engineering Congress and Exposition 

November 11-16, 2001, New York, NY 

IMECE2001/HTD-24157
 

ABSTRACT 

The history of stochastic capillary porous media 
transport problem treatments almost corresponds to 
the history of porous media transport developments. 
Volume Averaging Theory (VAT), shown to be an effec- 
tive and rigorous approach for study of transport (lam- 
inar and turbulent) phenomena, is used to model flow 
and heat transfer in capillary porous media. VAT based 
modeling of pore level transport in stochastic capillar- 
ies results in two sets of scale governing equations. This 
work shows how the two scale equations could be solved 
and how the results could be presented using statistical 
analysis. We demonstrate that stochastic orientation 
and diameter of the pores are incorporated in the upper 
scale simulation procedures. We are treating this prob- 
lem with conditions of B i  for each pore is in a range 
when B i  <~ 0.1 which allows even greater distinction 
in assessing an each additional differential, integral, or 
integral-differential term in the VAT equations. 
Nomenclature 

B i  
cp - 

dh 
ds 

f - 

f - 
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l] T 

kT 

_ h.a~ Biot Number [-] 
ks 

specific heat [ J / ( k  9 • K)] 
hydraulic dynameter, [rn] 
interphase differential area in 
porous medium [rn 2] 
internal surface in the REV [m 2] 
friction factor 

averaged over Aft s value f 
value f, averaged over Aftf in a 
REV 
value f morpho-fluctuationin a 

ft I 
heat transfer coefficient 

thermal conductivity [ W / ( m K ) ]  
averaged turbulent eddy viscosity 
[m2/s] 

turbulent diffusion coefficient [m2/s] 
turbulent eddy thermal conduc- 
tivity [ IV / ( rag)]  
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(m} - averaged porosity [-] 
Pr  - Prandt l  number  [-] 
p - pressure [Pa] 
q - heat  flmx [W/m 2] 
R - pore diameter  [m] 

Repo~ - Reynolds number  of pore hy- 
draulic diameter  [-] 

S~o - specific surface of a porous 
medium OS~o/Aft [ l /m] 

T - t empera ture  [K] 
u, w - velocity in x,z-direction Ira~s] 

Subscripts 

f - fluid phase 
i - component  of turbulent  vector variable 

cr - cross section 
s - solid phase 
T - turbulent  
w - wall 

Superscripts 

value in fluid phase averaged over REV 
- mean turbulent quantity 

Greek letters 

Af2 

A f t /  
Aft8 

/ /  

P 
# 

Introduction 

representative elementary volume 
(REV) [m 3] 
pore volume in a REV  [m3] 
solid phase volume in a REV [m3] 
kinematic viscosity [rn 2/s] 
density [kg/m 3] 
dynamic viscosity [kg/ms] 

As that mentioned by Kaviany (1995), among the 
fundamental studies for transport phenomena over 
rough surfaces in porous media, pore-level transport 
attracts more attention due to the need for a better un- 
derstanding and prediction of fluid flow and heat and 
mass transfer. Pore level models of porous medium in- 
clude morphological, or probabilistic parameters that 
are unique to this length scale. One popular pore 
level model to study the porous media is the network 
model. Capillary-bundle models are the simplest type 
network. They incorporate flow variation, but in ne- 
glecting the effects of inter-connectivity and tortuosity 
they are useful primarily as conceptual tools. Tortuos- 
ity is neglected because each pore is straight. 

The parameters that dictate a network's geometry 
are its spatial dimension (i.e., 2-D or 3-D), grid pattern 
(which maybe regular or irregular), bond-size distribu- 
tion, and coordination number (the value and whether 
it is constant). Numerous studies have been carried out 
with increasingly sophisticated rules to describe capil- 
lary equilibrium and simultaneous flow of fluids, such 
as Goode and Ramakrishnan (1993), Thompson and 
Fogler (1997), Rieckmann and Keil (1997) and Thau- 
vin and Mohanty (1998). 

In a network morphology, since each of the signifi- 
cant morphology elements can be random, researchers 
have gradually developed a more sophisticated descrip- 
tion to treat random network morphologies with up 
to 5 degrees of randomness: (I) pore surface rough- 
ness, (2) pore diameter,  (3) pore length, (4) pore path-  
way between nodes, and (5) pore cross-sectional shape. 
Travkin and Cat ton  (1999) proved tha t  statistical anal- 
ysis is an effective way to s tudy  the  behavior porous 
media  capillary network. 

Volume averaging is a widely used technique in which 
a macroscopic m o m e n t u m  equation is derived from 
Navier-Stokes equations and turbulent  regime equa- 
tions averaged over a small representative elementary 
volume. During the  averaging process, hydrodynamic  
information from the pore scale is retained, but  it is 
reintroduced in the form of unknown fluctuations tha t  
can be determined experimental ly or derived for simple 
pore structures.  

In this paper,  we continue to s tudy  the  capillary 
models introduced in works by Gra t ton  et. al. (1994), 
Travkin and Cat ton  (1999) and Hu et al. (2001). The  
capillary morphology shown in Figure 1 is used as a 
morphology model  for volume averaged capillary net- 
work model  development.  Travkin and Car ton  (1999) 
demons t ra ted  a two scale solution for vohtme averaging 
theory (VAT) model  of m o m e n t u m  t ranspor t  in a sim- 
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ple case of straight capillaries medium. For heat trans- 
fer in a network morphology, the temperature field is 
not homogeneous. Two scale solution for energy trans- 
port is addressed in this work. Statistical method is 
used to analyze the capillary two scale solution. 

The problem of lower scale heat transport in straight 
capillary is a conjugate problem. The analytical meth- 
ods of solution of conjugated problems presented by 
Luikov et al. (1970) and Luikov (1974) are used in 
this paper for solving lower scale conjugated convective 
heat transfer problems. Previous studies have shown 
that VAT models are effective for the study of upper 
scale heat transport in straight capillary morphology, 
see Travkin and Catton (1998), Zanotti and Carbonell 
(1984) and Yuan et al. (1991). But the approach used 
in this paper to formulate closure and to find solution 
if current VAT problem is essentially different to those 
previous work. 

In this paper a usual homogeneous momentum trans- 
port and heat transport in each pore and its surround- 
ing solid phase are defined as lower scale transport 
problems. The upper scale physical and mathematical 
model and governing equations are the VAT (heteroge- 
neous) equations described in following sections. 

Momentum Development for Flow in Porous Media by Using 
Network Model for Closure of VAT Statement 

In order to show how equations and consistent clo- 
sure models based on VAT are developed for transport 
of momentum in porous media using a network model, 
a one dimensional straight pore morphology shown in 
Figure 1 is chosen. For this kind of capillary morphol- 
ogy model, theoretical solutions for velocity profile and 
dispersion coefficients can be obtained. 

Upper Scale Momentum Equation 

The VAT based I-D momentum equation for turbu- 
lent flow in porous medium (Travkin and Catton, 1995) 
Flow ! 

Pore j 

Figure 1: Straight capillary morphology model 

shown in Figure 1 is 

(m) ('fit + u) Ox ] (1) 

-Ou 1 ~oo Ox~ e:-Af~ s~ 
1 0  ((re)p) 1 f (u T + u) 0-a -~ • d s  

Derivation and basics of VAT for turbulent trans- 
port is given in Primak et al. (1986), Scherban et al. 
(1986) and Travkin and Catton (1995). One can em- 
brace the all three possible flow regimes, laminar, in- 
termediate and turbulent, in each of the pores. For 
this momentum equation closure is obtained by model- 
ing the overall drag resistance factor, ca, for the second 
and third terms on the right hand side, and the second 
and third morpho-diffusive terms on the left-hand side. 
We are assuming fully developed momentum regime, 
which means that in the adopted medium eliminated 
the differential terms in the above momentum equa- 
tion, so the resulting VAT based momentum equation 
Copyright © 2001 by ASME 



becomes 

1 0 ((re>p) (2) 
~f Ox 

/o 1/o o . -  
_ 1 ~£ + --~ (.7 + .) • ,~ 

For closure of the integral terms in the above equations, 
one has to integrate over the interface surface (between 
solid and fluid) in the REV. 

Lower Scale Momentum Transport in Pores 

The relationship between the lower scale velocity and 
upper scale velocity and the relationship between av- 
erage velocity and fluctuation velocity are shown in 
Travkin and Carton (1999) and Hu et. al (2001). 
The momentum equation turbulent and intermediate 
regime treatment is reported in Travkin et al. (2001). 
This development is possible only because the momen- 
tum transport in each pore is independent from other 
pores. 

Heat Transfer Analysis for Network Model 
For heat transfer in the medium shown in Figure 1, 

the temperature field is not homogeneous. We would 
like to use the two temperature mode] developed in 
Travkin and Catton (1995) as upper scale governing 
equation. 

Upper Scale Governing Equations 

Travkin et al. (1993) and Travkin and Catton (1995) 
showed that the proper form for heat transfer equation 
in the fluid phase with primarily 1-D turbulent convec- 
tive heat transfer is 

=0Ty 
Cpf~f (m> u ~ (3) 

- <~1 + ks ,  

"~--'~X ~ T-"-~X }f 
"~- Cp f ~ f ~X 

-..-4 
(9 ('kT "~ k'f) f Tfds 

foo OTf --* +--~1 s~ (k~ + kf) Ei-(~ es, 

while in the neighboring solid phase, using constant 
conductivity, the corresponding equation is 

where 

1 Ox ( 1 -  (m))ks 0 0x 

Ox 

1 foo k~OT~ --* Aft  s,. ~ . ds~ 

(4) 

dsl = -ds 

For laminar flow, the two-temperature energy equa- 
tion is simplified to 

0x (5) 

0[ 

+~ 
1 [ OT: 

+-g-~ ]os~ k:-g-~x~ " d s '  

Lower Scale Governing Equations 

At the lower scale, the flow in each pore is homoge- 
neous flow. So the governing equations can be much 
more simplified. One feature is different, it is the di- 
mensions of space - 2D statements. For convenience, 
equations are written in cylindrical coordinate system 
instead of Cartesian coordinate system. 
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Governing Equation in the Solid Phase In the solid phase, 
the steady state heat conduction equation in pore i can 
be written as 

r o t  \ -6J] +~ \-~-x ) =o (6) 

The boundary conditions for each pore are 

= n~, T~, = T~,~,~, (7) 

r =  R~+&, T~,=G,~o~t, (8) 

where 6~ means the thickness of the cylindrical layer 
around each pore where the temperature drops from 
T ~ , ~  to T~,~,~t,. Ts,~o~t, is a constant temperature out- 
side the solid cylindrical layer. Here negligible varia- 
tions of heat flux at the external surface r = Ri + 6~ is 
assumed. 

Fluid Phase Governing Equations in the Pore Laminar 
regime treatment has been studied in Hu et. al (2001). 
In a cylindrical system, the lower scale energy equation 
for turbulent regime heat transfer in each pore can be 
writ ten as 

~i(r) r oTS` (z,,r) 
Ox 

Or Or 

(9) 

Symmetrical boundary condition can be applied to 
equation (9) at the center line of the straight pore 

r = O, OTs, (zl, r) 
Or = 0. (10) 

The conjugate boundary conditions are 

Ts, l~=~ -- T,, I~=~ - T,,~,~, (z,) (11) 

and 
- - - - - +  

q s,l~=~ : q s,l~=~. (12) 

Relationships between lower scale temperature and 
upper scale temperature To find out the average over the 
fluid phase within the REV one needs to use the lower 
scale results. 

1 /,ms -TSdw (13) <~s)s - A n  

: <~> {T}s : <~> } ,  

and the average over the solid volume within the REV 
is 

1 /a T~dw (14) 
<Ts>s -  An ~s 

= (1-<m)){T,}~=(1-<m>)T~ 

and A . . .  

T=T-T 

The details of lower scale simulation could be found 
in Hu et al. (2001). 

Closure of Morphodependent additional VAT terms in the up- 
per scale heterogeneous equations 

For closure of the integral terms 

1 
~sAn j~os, pds (15) 

and 
v f OU 

Jo An s~ Oxi " ds (16) 

in the momentum equations, one has to integrate over 
the interface surface OS~ (between solid and fluid) in 
the REV. 

While to solve the energy equations (3) and (4), the 
closure of the following terms in upper scale VAT equa- 
tions need to be found out. They are unknown terms 
in fluid phase heat transport  equation 

0 [ ( r n ) { - ~ ' u } S  1 0 x  (17) 

[ i -1 o ks Tsas (18) 
o ~ S - ~  s~ 

1 f . O T  S ~ 

a n  Jo s~ ~S ox, 
ds (19) 
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and unknown terms in solid phase heat transport equa- 
tion 

o (20) 
Ox S~ 

A ~  sw " Oxi " dsl (21) 

Turbulent  and transit ional equations need one more 
term for closure tempera ture  equation. 

ox 

And take nonlinear conductivi ty coefficient in the inte- 
gral terms. 

Mathematical Expressions for Calculation of Each Term in the 
Network Upper Scale Equations 

The upper scale equations are written in Cartesian 
coordinate• But it is easier to calculate the lower scale 
local fields in the local Cylindrical system. To make 
things simpler we start with the straight parallel pores. 
Figure 2 shows the relationship between cylindrical co- 
ordinate and Cartesian coordinate• The relationships 
between Cartesian coordinate and cylindrical coordi- 
nate when zt axis and x axis coincides (ai -- 0) are 

X ~ Z l 
y = r c o s ~  

z = r sin 

(22) 

The uni t  specific surface area ds could be calculated 
through the  following steps 

E = + 

= R~ sin 2 ~p + R~ cos 2 qo 

F Ox Ox Oy Oy Oz Oz 
- - - + - - - - +  -0 

O~ Ozz O~ Ozt O~ Ozl 
(OX~ 2 ( O Y )  2 <OZ) 2 

(23) 
G = \ O z , ]  + ~ + ~ = 1  
(x,y,z) 
(zt, rco~ p ,rsigo ) /lr 

i v • t . ," 
/ /  Zz," 

I 

zt : 
I X I 

i x 

Figure 2: Transformation between upper  scale Carte- 
sian coordinate system and pore local cylindrical sys- 
tem. 

So 

ds = x / E G  - F2dzld~ (24) 

= Ridzzd~, 

As we already discussed, to make the upper scale 
equations solvable, we need to calculate those unknown 
terms through the results of lower scale equations. 

In cylindrical coordinates, the operation factor has 
the transformation relationship 

(VV)i  j ni 

= n , .  (VV)~  (25) 

f OV~ 1OV~ 0V~k 
= ~ n ~ - ~ r + n ~ r - ~ + n z , - ~ z z ) i r  

f laV  

[" OV~ l 10V~ l OV~ z ~ . 

Calculation of upper scale laminar unknown terms In the 
upper scale equations, the terms for laminar regime 
VAT equations need to be calculated are two terms 
from VAT momentum equation, three terms from VAT 
fluid phase heat transport equation and two terms from 
VAT solid phase heat transport equation. For straight 
Copyright © 2001 by ASME 



pore capillary network, given lower scale results those 
unknown terms (16), (17), (18), (19), (20) and (21) 
could easily be solved. 

For parallel flow in straight pores we have the follow- 
ing relations 

u~,(~) # 0 (26) 
U~ = 0 

Uo = 0 

and in Cartesian coordinate 

u~ (~,y,~) = u~, (~) # o 
u~ ( x , y , z )  = o 

U ~ ( x , y , z )  = o 

(27) 

It 's obvious that  unknown term (15) in laminar 
regime f o r  straight pore morphology becomes zero be- 
cause n = (1,0, O)los ~. For example in pore #1,  

m 

Q, Aft s~. p (zl) ds 

1 foo --nip (zl) ds 
Qs Aft s~ 

p (zt) (n=i + nyj + n~k) ds e~Af~ s~ 

(28) 

in the local cylindrical_~stem coordinates for any of 
straight pore when axis i ~ = i, then ~ = (i~, O, O)los~, 
so 

_ 1 fo p ( z , ) (n~ i+nj+n~k)ds  
o~Af~ s~. 

_ 1 foo p(zL)(1,O,O)los ds 
OsAft s,. 

( 1 fo pds) ir+Oi~'+Oi" 

= 0 

(29) 

1 f 
] p (zt) RldztdpL + 0i~ + 0i= 

Ps Aft ./os~ 

For term (16) in laminar regime momentum equation 
Aft s~ Ox~ " ds = Af~ s~ i " -~zi ds. (30) 

In Cartesian coordinate, this term is expressed as 

~' fo -~ °Uj ds (31) Af~ s~ hi" Oxi 

~" fo ( OU= OU= n OUx~ --~ 
Aft s~ nz-~-x + nu--~Y + Oz ] ds i 

v f o  ( n = O U y n  OUy ~-~) - - -+  + --A-~ s~ \ O x + y -~y + n~ d s j 

u ~oo (n=OU" cgU, nzOU,~ --+ + - ~  s. \ Ox + ny-~y + Oz ] ds k 

While in cylindrical system coordinates, 

---4 

ds = -nds 

= (ir,0,0)los~ 

(32) 

Then 

L, fo --~ O~ ds h i "  
Af~ s~ 

u fo (nrOV~'~ds-~ 
Af~ s~ < Or ] 

g f= ,+l  (r) dzz 27r Rk u OUk,z~ 
Aft ~ ~, Or 

k=l 

and in each pore k 

(33) 

2~rRku f z ,+ ,  OUz, (r) dz t (34) 
Aft ~ =, Or 

_ 27rRkl] OVk,z, (r) r=R~ (X/+l -- Xi) 
Aft Or 

It could be derived that  velocity in pore k is 

vk,z, (r) (35) 

( d P ) ( R ~ - r 2 )  = 1 - T x  4# 
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This above expression for known velocity profile in each 
of straight pores yields an analytical formula for term 
(16) in each REV i 

u fo --OU -~ AFt s~ Ox~ " ds 

N 2~R~u OU~,~, (r) ~=R~ (x~+~ _ x~) 
k = l  

k = l  

= ~ 71"// 

k= -~-~ \ , d x ]  (x i+, -x i )  

(36) 

For term (17) in laminar fluid heat transport  equa- 
tion, it is a differential term. So it can be easily solved 
through grid equations. That  is 

Ox 

Ax 

^ ( ) where T f ( r , x = z l )  = Tl(r, z z ) - { T ( x ) }  f is the 

volume fluctuation temperature, and ~i = ui (r) = 

(u,  (~) - { v } ~ )  is the volume fluctuation velocity In 
% 

each REV, Tf (r, x) is the number result of lower scale 
% 

equations, and { T } / i s  the volume averaged velocity in 

REV. So Tf could be easily calculated in each REV. 

For unknown term (18), it could be calculated from 
the following correlations 

O ( kf fo Tfds)  

OX k = l  u xl 
T~kdz,)) 

(38) 
Z 

) x 

.. B 

REV 

X R ~ v  

Figure 3: One pore VAT calculation 

For term (19) in pore k, 

1 f _ ~OTfk ds--* 
~ n  Josw kS ox,  

(39) 
21rRt~kl fx,+l OTIk 

-- A~2 ~ ~, -~r dzL. 

In the solid phase energy transport  equation the 
terms (20) and (21) are identical to terms (18) and 
(19) respectively from the fluid phase energy transport  
equation. Because the temperatures and heat fluxes on 
the interface surface are equal 

TI ]osw = Ts Ios~" 
Coordinates Transformation 

To start the upper scale calculation, we start  with 
assigning volume for pores randomly angled in the REV 
(see Figure 3) in spherical system of coordinates where 

~ and Os are randomly assigned angle values in 
ranges 

71" 71" 
2 < ~ s < - ~  (40) 

0 < 0s<~r  
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also the thickness of REV is 

0 <~ x < XREV (41) 

and Cartesian initial coordinates are 

x = r, sinO, cosp (42) 

y = r, si nOssin 

Z ~- r s cos  0 s 

where ~ is the vector (module rs) along any selected 
pore. 

Assigning the plane crossing the vectors 

( k , r ,  = 7 / ) i s  

r, = ri (43) 

= cos(r~,x) i +cos(r~ ,y)  j + c o s ( r , , z )  k 

where 

cos (r,, x) = sin 0, cos 

cos (r,, y) = sin 0, sin qo 

cos (~ ,  z) = cos0s 

(44) 

So 
k = 0 , 0 , 0 )  

is like assigning the plane 

(45) 

( r - -  rl) ( r - -  r2) ( r -  r3) : 0 

or  

Avx + Bpy + Cpz = 0 (46) 

where Ap, t3; and Cp are the plane normal's coordinates 
n (~,r,) which can be easily calculated based on ~s and 

Os. 

Then we make transformation of our initial Carte- { --*---*---~} 
sian system coordinate ~ = 0, i , j ,  k to a system 

{ E 1  = 0, i l ,  j l ,  via the rotation around normal 

vector (A;, Bp, Cp) for 0, angle. Getting transforma- 
tion of coordinates in this way 

Xl = x(cosOs+a2(1-cosO,))  (47) 

+y  (Tsin0, + a/3 (1 - cos 0,)) 

+ z  ( - g s i n  0, + ~ 7  (1 - cos os)) 
9

Yx = (48) x (--7 sin O. + a/3 (1 - cos 0.)) 

+ v  (cos 0, + ~2 (1 - cos o,))  

+ z ( ~ s i n 0 s  + ~ 7 ( 1  - c o s 0 , ) )  

Z1 x 03 sin 0s + c~ 7 (1 - cos 0s)) 

+y  ( - a  sin 0s + "),/3 (1 - cos 0s)) 

+z  (cos 0, + V 2 (1 - c o s  0,)) 

(49) 

where 

= cos/(x, 

9 = cos/(v,~(~,<) 

V cos L --+ = (z, n (.x~)) 

(50) 

One can find out the reverse transformation, which we 

need to use further. The local calculations in cylin- 

drical systems of coordinate }--~p~ = O, i~, j~o~, kz~ for 

each i th  pore performed as we outlined before then must 
be transformed back to systems Y]I and initial Carte- 
sian coordinate system y] .  In this way we still reduce 
the algorithmic complexity while continue to calculate 
closure mathematics without compromise. The local 
lower scale volumes and interface surfaces are trans- 
formed from straight parallel morphology and comprise 
themselves as stated pores and rings. 

Random Distribution Pore Size Morphology 

The porous media network approach used here is 

to solve the lower scale transport equations first be- 

cause lower scale equations have much simpler forms 

and some of them have theoretical solutions. As soon 

as the lower scale equations are solved, their solutions 

can be used to find closure for the upper scale equa- 

tions and to solve upper scale equation based on the 

relationships between lower scale variables and upper 

scale variables. 

One of the primary goals of lower scale numerical 

simulation is to obtain momentum and heat transport 

results that are exact solutions and for which exact 

averaging procedures could be accomplished for a broad 

spectrum of flow regimes and pore diameters. Results 

were generated for a specified range of diameters then 
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Figure 4: High flow regime velocity histogram for cap- 
illary with uniform pore diameter distribution in range 
(0,3] mm, Repor=4413.9. 

complied using an appropriate distribution to guide the 
sampling, the distributions of pore radii were taken as 
uniform and normal. 

The series of calculations were made for diameters 
ranging from 0 to 3 ram, including fine pores and pores 
with diameters on the order of imm. They were mod- 
eled for different flow regimes in different pores and for 
various assigned pressure drops. From Figure 4 we can 
see even for uniform flow regime and uniform pore ra- 
dius distribution, outcome functions sometimes reflect 
an extreme shift toward both sides of the results ranges. 

Figure 5 shows the difference between uniform and 
normal straight pore morphology pore diameter distri- 
butions medium velocities and dispersion coefficients 
in laminar regime. It shows that in certain range 
(2ram < di < 5ram) these two distributions compare 
well. There is a big difference for these two distribu- 
tions at extreme cases. 

Figure 6 shows the laminar regime velocities his- 
tograms of uniform and normal pore diameter distribu- 
tions medium. It shows that the velocity histogram in 
uniformly distributed pores and the velocity histogram 
in normally distributed pores have nearly same trend 
1

~.4 

• ~ 2 

Velocity in uniform pore distribution 

K in pores with uniform distribution 

........... Velocity in normal pore diameter distribution 

. . . . . .  Dispersion coefficient in pores with normal 

distribution 

° . , "  

o ,. 

I I I I I I I 

0.000 0.001 0.002 0.003 0.004 0.005 0.006 

Pore diameters (uniform and normal distribution) 

0.007 

Figure 5: Comparison of laminar regime velocity and 
dispersion coefficient for straight capillary with normal 
and uniform pore diameter distribution 

when the normalized distribution variables have values 
> -1.0. 

Heat transport is also an important part. Figure 
7 depicts interesting tendency of upper scale averaged 
fluid temperature along flow direction in pores with di- 
ameters have a uniform distribution. This figure shows 
that pore averaged temperature directly correlate to 
pore diameter given each pore has same inlet fluid tem- 
perature. So randomness of capillary pore morphology 
results in non-linearity of capillary upper scale heat 
transfer performance. 

Summary and Conclusions 

Two scale heat transport conjugate problem in cap- 
illary porous medium is addressed using a rigorous 
application of volume averaging theory and statisti- 
cal method. This two scale approach is carried out 
in three steps. The first step is to solve equations for 
lower scale transport in each straight pore. The sec- 
ond step is to use lower scale results in upper scale 
VAT equations and solve upper scale VAT equation. 
0 

Copyright © 2001 by ASME 



80 

60 

- -  Velocity histogram in uniformly distributed pores 
Velocity histogram in normally distributed pores 

. . . .  Pc~re diameter histogram in normally 
dislbuted pores 

~4o 

~ 2 o  

, I , I , I , I 

-4 -2 0 2 4 

Normalized distribution variables 

Figure 6: Laminar regime velocity histogram for 
straight capillary with uniformly and normaly dis- 
tributed pore diameter 
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Figure 7: Pore average temperature for different radius 
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Thirdly, the upper scale VAT results are analyzed us- 
ing statistical method. The problem stated and treated 
in this paper is part of the problem of capillary net- 
work porous medium simulation. Transport in capil- 
lary straight pore morphology could be used as a model 
of membrane transport. The attractive feature of this 
morphology is that all parameters and characteristics 
can be evaluated precisely for both scales. 

Statistical analysis of capillary network morphology 
numerical results shows some interesting phenomena. 
The results also shows that both VAT and statistics 
are effective ways for the study of pore level capillary 
network. 
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