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ABSTRACT

The objective of this work is to describe
the numerical methods used to solve a math-
ematical model that predicts laminar and tur-
bulent flow and heat transfer for plane two-
dimensional channels. The problem is treated
in a two steps. The first step is to derive
partial differential equations for momentum
and energy conservation in the fluid and solid
phases (two temperatures) in the channel de-
rived from volume averaging theory (VAT) for
heterogeneous media with a continuous incre-
mental changing of the porosity and specific
surface area. The second step is to solve the
set of equations using a numerical method so
that turbulent flow and heat transfer in porous
media can be simulated. The channel inves-
tigated is assumed to be filled with a regu-
lar arrangements of discrete arbitrary obsta-
cles. The transport equations for the REV
are based on VAT and are given in this pa-
per. These equations allow investigation of
virtually an unlimited variety of morphologi-
cal structures in a channel. The obstacles in

the channel are assumed to be symmetrically
shaped and regularly arranged. The flow in
the channel is steady state, fully developed,
laminar or turbulent and incompressible. Af-
ter constructing some closure models for the
above equations, numerical solutions of the re-
sulting model equations for turbulent flow and
heat transfer in a channel filled with spherical
beads or square tube banks are obtained and
found to compare well with experimental re-
sults.

Nomenclature

b - mean turbulent fluctuation en-
1,,9,,° 242
ergy = 3t;b; [m7s?

g - mean drag resistance coefficient

in the REV [-]

ep - specific heat [J7#(kg ¢ K)]

C; - -constant co-
efficient in Kolmogorov turbulent
exchange coefficient correlation [-]

dn - hydraulic dynameter, [m)]

d, - sidelength or diameter of the unit
[m]



R <

Subscripts

interphase differential area in
porous medium [m?]

internal surface in the REV [m?]
friction factor

averaged over AQ)y value f

value f, averaged over A}, in a
REV

value f morpho-fluctuation in a
Qy

width of the channel [m)]
half-width of the channel [m]
thermal conductivity [W/(mK)]
key variable

averaged turbulent eddy viscosity
[m?/s]

effective thermal conductivity of
solid phase [W/(mK)]

turbulent eddy thermal conduc-
tivity [W/(mK)]

turbulence mixing length [m]
porosity [-]

averaged porosity |-]

pitch [m]

pressure [Pal]

Reynolds number of pore hydraulic
diameter [-]

specific surface of a porous medium
0S5,/ AQ [1/m]

= 51/AQ [1/m]

cross flow projected area of obstacles
[m?]

temperature [K]

averaged solid phase temperature
velocity in x,z-direction [m/s]
volume [m?]

flow direction [m]

direction perpendicular to the wall

f - fluid phase, or, Fanning

1 - component of turbulent vector variable
L - laminar

s - solid phase

T - turbulent

Superscripts
value in fluid phase averaged over the REV

~Y -

— - mean turbulent quantity

s - iteration number

Greek letters

ar - averaged heat transfer coefficient
over 0S8, [W/(m?K)]
A2 - representative elementary volume
(REV) [m?]
AQ; - pore volume in a REV [mg]
AQg - solid phase volume in a REV [mg]
oy - turbulent coefficient exchange ratio
Ko /Ky [-]
or - turbulent coefficient exchange ratio
Ko /K7 [
v - kinematic viscosity [m?/s]
o - density [kg/m?]
7 - turbulent friction stress tensor
[N/m?] = — g
7w - wall shear stress [N/m?]

1 Introduction

Interest in turbulent flow and heat
transfer in porous media is motivated by a wide
range of thermal engineering applications rang-
ing from geothermal systems, oil extraction,
solid matrix heat exchangers, ground water pol-
lution, thermal insulation to the storage of nu-
clear wastes. Transport phenomena in fluid-
saturated porous media has been the topic of
numerous studies published in the literature in
recent years. For example, laminar flow and
heat transfer through a porous flat channel with
isothermal boundaries were considered in the
research of Kaviany (1985). The solution of



the equations used by Kaviany, close to those
used by Vafai and Tien (1981), showed the in-
fluence a porous medium morphology parame-
ter v = (h?mo/K)? on the results. Nowadays
transport phenomena in porous media can be
investigated in detail because of the progress
in computer performance and numerical meth-
ods. The number of publications devoted to
the development of numerical methods for solv-
ing problems of transport in porous media in-
creases every year. Travkin and Catton (1992)
presented a new model of turbulent flow and of
two temperature heat transfer in a 2-D channel
with highly porous medium. Huang and Vafai
(1994) presented a detailed numerical inves-
tigation (vorticity - stream function method)
of forced convection enhancement in a parallel
plate channel with a porous block obstacle on
one side of the wall. Travkin et al. (1998) inves-
tigated the channel flow characteristics as the
channel flow porosity approaches unity through
numerical simulation.

The main purpose of the present paper is
to discuss the state-of-the art in modeling of
flow and heat transfer in porous media using
modern applied and computational mathemat-
ics. To accomplish this, detailed numerical
simulation scheme as well as the mathemati-
cal model for flow and heat transfer in porous
media will be discussed in this paper. The
physical problem chosen is flow of a Newtonian
fluid through a channel assumed to be rough-
ened or filled with a regular arrangement of
discrete arbitrary obstacles. The representa-
tive elementary volume (REV) in the porous
layer is defined as the volume contained in a
plane rectangular region parallel to the subsur-
face or a disk whose horizontal dimensions are
far greater than characteristic dimensions of the
obstacles. The obstacle elements of the channel
are assumed to be symmetrically shaped and
regularly arranged, and the flow in the chan-

nel is steady, fully developed, turbulent and in-
compressible. This approach was used in previ-
ous studies and demonstrated encouraging re-
sults for a channel with highly rough surfaces
(Travkin and Catton, 1992, 1995,1999).

This paper is organized as follows. The basic
equations governing the flow and heat trans-
port in porous media are presented in Section
2. Finite difference method based on Samarskii
(1989) for solving those governing equations are
discussed in Section 3 and Section 4 shows some
numerical simulation cases. Finaly, some con-
cluding remarks can be found in Section 5.

2 Mathematical Models For Flow in a Channel Filled
With Porous Media

The momentum equation for incom-
pressible turbulent 1D flow in a channel filled
with a porous media based on K — ¢ modeling
was developed in previous works (see Travkin
and Catton (1992, 1995) or Gratton et al.
(1996)).

A one dimensional flow model for fully devel-
oped steady state conditions that accounts for
the morphological structure of the rough wall
layer when there is no penetration through the
elemental specific surface area 05, an imper-
meable interface, and a statistically homoge-
neous stream after closure specified by regular-
ity of porous medium elements yields the form

0 ~ o ()
@<<m<z>>Km<z> 8z> )

1 ~2 1 d<p>f
= §Cd(Z)Sw(Z)U +Q_f A .

Note that the above equation limits correctly
to open channel flow when < m > approaches
unity and S, approaches zero. In the central
part of the channel with a rough layer, when
in the out of the rough layer, the porosity <
m >= 1 and the specific surface area 0S,, = 0.



This simplifies the above equation to

0z 0z of Oz
Following the theoretical assumptions of
Monin and Yaglom (1975) and of Menzhulin
(1970) that most of the interaction kinetic en-
ergy is transferred to the turbulent kinetic en-
ergy, Travkin and Catton (1992) suggested an
equation for the mean turbulent fluctuation en-

ergy b(z) of the form

o () () %)
Loy (dbl/Q (Z)> n f1 (Cd) Sw (Z)%EI (3)

dz (m)

g [~ oT B2 (2)
- K e - —_—
TwoT "0z = o ’

where the mean eddy viscosity K, (2) is given

by
Ky (2) = 'L (2) 012 (2) (4)

and [(z) is a turbulent scale function defined by
the porous medium structure. The fourth term
on the left hand side is the contribution of form
drag.

Similarly, the energy equation for the fluid
phase within the wall porous structure is

corop ()i (2) ZA0D) )

0 ~ OT (x, 2)
- @<<m<z>>KT<z>a—>

+a1 (2) S (2) (T (2,2) = T(a,2)).

and in the solid phase of the wall layer, the cor-
responding equation for the solid phase volume
averaged temperature is

0 ((m () (B4 v) aﬁ(z)> _ iM'

0 OTs (x, 2)
5= (1=m e K (0 22 )

= ar(2) S (2) (Ts (z,2) — T(%Z)) )

with (z,2) € AQy , P.r = 1 and IN(T =
[?mcpfpf + ky . In the limit as the rough layer
becomes more and more open or as the thick-
ness of the rough layer becomes less and less,
the porosity of the rough layer tends to unity
leading to < m >= 1 and S,, = 0. This will
simplify the transport equations. The simpli-
fied transport equations are exactly the same as
the momentum and heat transport equations of
clear channel.

The boundary conditions for these equations
are

- ob _
z = Ozﬂzo,gzo,l{m:v,l{mk:kﬁ
oT, ~ aT
QO = —KSTE, GZSO QOZ—KTa (7)
ou ob or oT,
i=hig =0, =0, =05, =0

In the laminar regime, the governing equa-
tions and closure models are much simpler. The
physical process is governed by three equations
instead of the five equations needed for the tur-
bulent regime. The coefficient of viscosity and
conductivity in laminar VAT equations are con-
stants, and the porosity and specific surface
function are functions of morphological models
of the porous structure. This mathematical
statement is used in cases where overall mor-
phology and momentum transport conditions
determine a low transport rates.

3 Numerical Scheme

3.1 Numerical scheme for momentum and kinetic

energy balance equations

It is assumed that pressure gradient is a con-
stant for flow across regular arranged porous



channel. The momentum equation (1) for the
turbulent regime can be written in the form

When this equation is approximated by a three
point stencil (z;_1, 2;, zi+1), the result is a sec-
ond order difference equation with variable co-
efficients of the form

s s+1 ~s+ ~s+1

Ju ] 1 C]Su_j +B]u j+1 (9)
= —F, j=1,2,...,N—-1

The momentum equation (8) is next discrete-
sized to yield

ioa; o, Qi 1 ~ \ ~s+1
_ hmhj + h01 J};‘ 5 ca, Swj Uj> U,
g1 J+11¢j

My Ajy1 | =s+1 s
—F7 10
" < h]+1h] ) R " ( )

where
s _ %Ola;
A = h;h;
. al
B* _ 01 7j+1
- hji1h;
xoad . al 1 ~s
C§ — 01 ]+ 01 ]+1+_ Sw-_'
i hhy | hyahy 2 7wt
5= _kel <m]> @ — fstl
Ju or dx Ju
h;+ h;
h; = %
kl;, + k1,
aj1 = kljios = %
k1, + k1,
a; = kl; 05— %

Kl =kl = (my) Ky,
K, = v+v= Cll/4l(z)b1/2(z) +v.

The equation for turbulent kinetic energy can
be transformed in the same way.

3.2 Numerical scheme for energy equation in fluid
phase

The energy equation (5) in the fluid phase
has the simplified form

k0 (z,ﬁ) % (11)
- [ ) T

+S1T (Z, T, TS) .

The discretesized version of the above equation
can be written as

(Tis = Tirs)

h;

— AT ; + Sl
(12)

k0,



where the operator A,T} ; is given by

0z 0z
Y =stl (%01aj+1) =
= (ST, (e T
( hihy ) 7 hj+1 7

2, A o1 Gj+1 =s+l
- n (13
( hih; — hjpah; ) N (13)

M, = 2 [mT (-.7) @]

The energy equation can be rearranged to

70,95 \ 7
= (ST
( h; ) R

7, Air1 \ =
+ 01 )+ ) Tz )
hjnhy )~

~ 1 T
(Cpf or (m) U) - Tar Swj) T,

J Ty

P = s
+ ( 01 J-‘r'l) Ti,j—i—l + OéTijst

44"

allowing it to be written in the form

where

>, a;
As — 0177
- hih;
1, Qi
B _ 01j+
- hjtihy
o - o1 4 o1 A5 +1
- hily — hjhy
+ (Cpf oy (m) H) o+ ag, S,
Cirs = Q15

h' — hj+h]+1
J 2
k1, + k1,
a1 = kljos = —— -
k1, + k1,
a] = k1],05 ]+2 g1

Kr = Kr+ky.
The boundary conditions for the fluid phase en-

ergy equation are the following:
At the channel inlet, z = 0

Tsloeo = T|m:o =T}, = const (16)

At the top of the channel, z = h

T (z, 2)

5, l=n = 0 (17)
0Ty(x, 2) B

0z fo=n =0

At the bottom of the channel, z =0

~ 8%(1’, z)

(m (2)) Kr (2) = (18)
= ()8, (2) [Ty (2,2) — T (x, 2)
- <m> Qout-



3.3 Numerical scheme for energy equation in solid
phase

The energy equation (6) in the solid phase is
transformed to

0 0Ts(z, 2) 0 0Ts(x, 2)
Ox {MTS Ox } * 0z {le& 0z
- 527~(z,f11;). (19)

The difference form of the above equation can
be written as

ATy 5 + ATy 5 = S2qy, (20)

where

0 0Ts(x,
MTs;; = %les {%}

4, A
- (Z%) 7,
(mm) H
o, 4
—— ) Tyii14 21
+(h¢+1h¢> +1,j (21)

o, A o, A
_ T, :
( hih; * hi+1hi> 7
=~ 0

AQTZ'J = _{les (Z)

OTs(z, 2)

z = e

25,
= Tsz’ j—
(%%) o
7, A1
+ M) TSZ. i1
( hjy1hy; o
_ 4, 4 + o1 Aj+1 T. .
hjhj 81,5

hjsaly
and can be put in the form

As Ts.Jrl

3T's~ si,j—1

. Cs+1TS~+1 (23)

jT's ~ si,j
~s+1
+BS Ts+1 + s Ts+
iTs* si,j4+1 JTFs* ij

s
_F’]'Ts

where

P
As — 017"]
- hih;
7, A5t
B — 01*j+
o hjaly
s _ Znlj Ho105+1
e =
’ hihj — hjpah;
M1 @ o1 05+1 ~
ik heah OO
C;TFS = aST]-Swj
FjSTs = (1 o <m>]) S'}]
aj aj+1
ST+ P T
+hz’hi L hiy1h; i
hi+hi+1
h, = ———
2
h; + h;q
h: = J J+
J 2
kl; + k1,
ajr1 = k1j+0.5 = JTJH
kl;,+ k1,_
a4, = klj g5 — i1
2
klj = klpg = (1—(my)) Ko,
Kg = k.

3.4 Equations solving procedures

When solving the above set of equations
(9),(15) and(23) the momentum equation and
turbulent kinetic energy equation need to be
solved first. The exact solution of equation (9)
for ﬁj follows from

Ty = vy + 208N (24)
1-— oOLN
and
ﬁj = Oéj_,.lﬁj_,_l + ﬁj—i—l 0<jJ<N-1
(25)
where
Q) =10 ﬁ1 =" (26)



and The calculations needed to obtain grid values
~s+1
B. of T, ; and T;;;-l are
J . bl 3
G = g Ay PSISN LR
A]ﬁ ]F] X\, = Bi'Ay, Z\=B;'F,
. = 2 I 1<i<N—-1(28 ) 0 Lo
fraa C— oA, (28) Xj1 = (Bj = Cj 'Xj) Ajs

o o -1 o
After solving the momentum equation and 7j+1 = (Bj —Cj 'Xj) (Cj 7]’ + ?1) ’

kinetic energy equation, the energy equations 1 < j<N-1 (32)
can be solved. Since the heat transfer problem

for flow in porous media is a conjugate prob- and

lem, the fluid phase and solid phase heat trans- 1

port equations must be solved simultaneously ?N = (By—CnXN)™ - (CN 71\7 T ?N )(33)

instead of sloving fluid phase heat transport ?j_l = Xj7j + 7j7 j=N,N—1,---2,1.
equation only. To aid in the solution proce-
dure, Eq. (15) and Eq. (23) are combined and Here B; Cj, A;, X; Bo, Ao, Bn, Cn are matri-
written in the form ces of 2nd order.

If written in matrix form, the lower boundary

;lj 7;’ 11— éj 73"*‘ Covj 7;’—1 (29) condition becomes

- _?j Isish-L A071 — 3070 = —?0 (34)
where where
[ ~s+1 <m>(;i5f<T,o.5 0
Y. = | Ty 30 Ag = o~ _m), )R
J I T;i;rl ) (30) 0 (1—( )};)]_.5:)1KST’O_5 (35)
o . | BjT (%) 0
AJ B 0 B; (T) ’ <m>0.5f<T,0.5 — arnS araS
L B JT \*s By = hi1 arool QrooL
é Cir (T) Cirs areSy B
oo Cir (1) | (1 {m)y) Ksros -
L JTF B JT \+s B022 — h0.5 > . O‘T,OSJ_
5' . AjT (T) 0 J=1
J 3
| 0 Air (Ts) s s
L (F V., — TZ-71 V.- TZ.70
A R O N B T T ]
L FJ'T (TS) ; .

o= [0 on |

The upper boundary condition is written as

Yu=X;Y;+Z;, j=NN-1,---21. —ByY N+ CyYni=—Fn
(31) (36)

The solution of equation (29) can be written in
the form



So that
~Tin+Tin-1 = 0,
—Tsy+Tsn1 = 0. (38)

Since temperature changes with both = and
z, So iteration in x direction is also needed.
Iterations are based on the equations given be-

low,

(%1'+1, i %1', ) ~
k‘OJ ’ ’ — AQT’i,j + SlT]
(39)

and
M1 4
— ) Tt 4
<h2+1h2) +1.5 ( 0)

2, A 2, A 4, A
== Tsz' i Tsz'— j
( hih; * hz'Jrlhi) ! ( hil; ) H

—AQTSZ"J' + S2Tj~

The final convergent solutions satisfied the

following convregent criteria for T, T, and 7,
lLe.

~s+1 ~s

T -T

<0 (41)
T

Ts+1 _ Ts

= sl 107 42
- (42)

and

%5+1 _ %s
— <1074 (43)
u

4 Results and Discussion

In order to solve the model equations, many
coefficient and mathematical models were de-
veloped. Watanabe (1989) proposed a drag
model for flow through granular packed beds.
The model can be applied over a wide range
of the particle Reynolds number and can be
used to derive various empirical formulas. All
the coefficient models used and discussed in the
present work are strictly for assumed (or ad-
mitted) porous medium morphological modes
based on well described geometry. This ap-
proach shows that to model the morphology of
a porous media, the coefficients in the equa-
tions as well as the equation form itself must
be consistent. The integral terms in the equa-
tions can be dropped or transformed depending
on the porous medium structure, flow and heat
transfer regimes. Developed closures allow one
to obtain exact analytical dependencies for sim-
ple porous medium morphologies.

In this section we present simulation results
of VAT based transport models and closure
models for flow in a channel with several typi-
cal morphology structures. For example , con-
sider channel flow across round tube banks and
channel flow across square tube banks. The
morphology models used in the numerical sim-
ulation are shown in Fig.1 and Fig. 2. Fig. 1
shows the side view and the top view of a chan-
nel with height 2h filled with regularly arranged
square cylinders with pitch P and side length
d,. Fig.2 shows the side view and the top view
of a channel with height 2h filled with regularly
arranged cylindrical tube banks with pitch P
and diameter d,. For flow across tube banks
(square and cylindrical), the tubes are regularly
arranged.

The grid sizes depend on the morphology
model of porous medium. The grid size cho-
sen for the models shown in Fig. 1 and Fig.
2 are Az = h/1000 along z direction and
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Figure 1: Channel flow across square tube

banks

Az = h/1000 along x direction.

4.1 Channel flow across square tube banks

In order to incorporate the morphology of a
porous medium in the model equations, poros-
ity m and specific surface S, in each REV need
to be specified. The REV porosity of the mor-
phology model showed in Fig. 1 is

AQy df,
(m)=—q =1- %5 (44)
And REV specific surface is
0S, 4d,6 4d
Sw — _ pr __ P (45)

NP P

where 6 is the REV height. So channel equiva-
lent hydraulic diameter dj, is

Side view

Flow oh
Side view

- 000080:
0000

d,

<>

Top view

Figure 2: Flow across round tube banks

And channel porous Reynolds number is

=~ = P2_d2
Reper = " _TPod)

vd,

The friction factor for flow across square
tube banks was developed from Souto & Moyne
(1997) through curve fitting. From this paper
one can deduce that

A 7

lgrpr = —L0lg (Rey) +2.388  (48)

P s defined in Souto & Moyne (1997)

where 2
> (49)

AL
as

& () (s
AL o) \(L—(m))A

= ()
= =3fs
72 \AL

i B 3,

1—{(m)*v v 2 (50)

and

Re, =




m f: (Souto & Moyne)
—f: (SVAT)

0.1 +

0.01

10 100 1000
Re,.

Figure 3: Comparison of the SVAT results and
Souto and Moyne (1997)

where a, 1s the ratio of the fluid solid surface
to the volume of the particles. From the above
three correlations, we can deduce that the Fan-
ning friction factor is

1 Ap 102388 54.3

" 3AL  30%3Rep,  Rep (

Ir
51)

Compared with Souto & Moyne (1997), on
Fig.3 the momentum resistance of SVAT model
is in very close agreement.

Fig.4 is the velocity distribution when poros-
ity approaches 0. When porosity becomes
smaller and smaller, the form drag will play
a more and more important role. At the same
pressure gradient the larger the form drag, the
smaller the velocity. From physical view point
this is exactly what we expect.

4.2 Channel flow across round pin fins

To illustrate the validity of the present math-
ematical model and numerical scheme, another
experiment conducted is to simulate air flow
through staggered round pin fin channel. For

10000

0.120 +

0.100 + - -
Theoretical solution
———dp =.0001m Repor = 6438.6 M = 0.99998 Cd =.24310E
dp =.001m Repor = 1807.9 M = 0.99750 Cd =.69538E-(
0.080 +
E
= 0.060 +
o
[T}
<
0.040 +
0.020 +
0.000 } } } } }
0 0.005 0.01 0.015 0.02 0.025

velocity [m/s]

Figure 4: Channel average velocity of flow
across square tube banks, <m> —> 1.0

morphology model of pin fin channel the poros-
ity and specific surface can be expressed as

my = =3 (52)
P2
2md

S =" (53)

The closures needed for oy (z) and ¢, (z) which
are used for momentum and energy trans-
port across pin fin channel are derived from
Zukauskas (1987). In order to compare numeri-
cal results with experimental results, the pin fin
configuration chosen here is the same as that
shown in Fig. 3 of Al-Jamal and Khashashneh
(1998), that is P = 28mm and d, = 12mm.
Fig. 5 shows a comparison of channel Nus-
selt number from present numerical results and
the experimental results presented in Al-Jamal
and Khashashneh (1998). The Nusselt num-
ber defined here, that defined by Al-Jamal and

0.03
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Figure 5: Pin-fins channel Nusselt number

Khashashneh (1998), is

Qd,y

Nu =
krStotar (T — 1)

(54)

where Si,iq 1s total heat transfer area in the
channel, T;, is average wall temperature and
T is average air temperature in the channel.
From Fig.5 we can see that prediction is about
30% less than experimental results at the high
Reynolds number, but they are comparable.

5 Summary and Discussion
The VAT, and SVAT, based equations
are presented and tested for several cases. Un-
der many circumstances this is dealt with by
the author of the different equations choosing
closure relations that match the data of inter-
est to him. This does not help generate reliable
analytical tools because the parameters needed
to fully describe the media are missing. The
result is wide variation in the predicted heat
transfer or pressure drop for any given media.
This study addresses some of these issues.
The main purpose of this study is to present a
numerical scheme for the verification of closure

methodologies as well as comparison with avail-
able models for two dimensional channel flow in
a porous medium. This was accomplished by
first developing a numerical scheme for solving
the model equations of flow in porous media
presented by Travkin & Catton (1992,1995),
and then applying the closure models to sim-
ulate the specific case of two dimensional flow
through a porous medium. Through the appli-
cation of the SVAT closure model to some gen-
eral morphology models, such as pin fin chan-
nel flow, it is demonstrated that the transport
model, closure scheme and numerical method
are reasonable. The numerical results show
that the model developed in this paper is ap-
plicable to the study of flow in channels with
rough walls or in channels filled with regular
porous matrix, and demonstrates that the sim-
plest morphological properties of a porous layer
such as porosity function and specific surface
along with closure models naturally affects the
transport fields in the channel.
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