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Abstract

Conventional reasoning and established procedures
for measurement of heat and charge conductivities at
the continuum micrometer scale, or higher scales, re-
sults in a number of variables and physical entities be-
ing the subject of measurement. These variables them-
selves are not point values if to define them with the
lower scale concepts. When the media overall prop-
erties are sought, their dependence on lower (smaller)
scale physical phenomena and their mathematical de-
scriptions need to be considered and incorporated into
the higher (larger) scale description and mathemati-
cal modeling. This is not a new problem. How to
treat or solve multi-scale problems is the issue. Effec-
tive scaled heat and charge conductivity are studied
for a morphologically simple 1D layered heterostruc-
ture with the number of components being n > 2 | the
effective scaled heat and charge conductivities. It is
a two-scale media with the lower scale physics of en-
ergy and charge carriers being described by commonly
used models. A continuum <« continuum description
of nm < pm transport of electron - phonon energy
fields, as well as the electromagnetic and temperature

fields for nm scale coupled with the microscale (um)
mathematical models are studied. The medium is het-
erogeneous because it has multiple phases, volumetric
phases 1, 2, 3 .... and (n+m) phases that are the in-
terfaces between volumetric phases. The fundamen-
tal peculiarities of interface transport and hierarchical
mathematical coupling bring together issues that have
never actually been addressed correctly. It is shown
that accurate accounting for scale interactions and, as
is inevitable in scaled problems, application of funda-
mental theorems to a scaled description of the Laplace
and V operators bring to the upper scales completely
different mathematical governing equations and mod-
els. We have conducted and report some preliminary
quantitative assessment of the differences between the
static upper scale and transient nanoscale transport co-
efficients and show how the lattice morphology and its
irregularities influence the effective conductivities.

NOMENCLATURE

¢p - specific heat [J/(kg - K)]

ds - interface differential area in porous medium [m
0512 - internal surface in the REV [m?]

‘]
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D - electric flux density [C/m?]
E - electric field [V/m)]

ﬁ- = {fi},- VAT intrinsic phase averaged over A(; value
f

< f >y - VAT phase averaged value f, averaged over
AQ; in a REV

} - VAT morpho-fluctuation value of f in a €;

j - current density [A/m?]

< f > - time averaged value f

ki = ky - fluid phase thermal conductivity [W/(mK)]
ko = ks - homogeneous effective thermal conductivity
of solid phase [W/(mK))]

(m) - averaged porosity [-]

(s9) - solid phase fraction [-]

S12 - specific surface of a porous medium 9S1,/AQ
[1/m]

T - temperature [K]|

Subscripts

f =1 - phase 1 or fluid phase
s = 2 - solid phase
¢ - charge

Superscripts

~- value in fluid phase averaged over the phase A(2,
x - complex conjugate variable

Greek letters

e — dielectric permittivity [Fr/m]

i - magnetic permeability [H/m]

p - electric charge density [C/m3]

o - medium specific electric conductivity [A/V/m]

® - electric scalar potential [V]

AQ- representative elementary volume (REV) [m?]
AQ; = AQy - pore or phase 1 volume in a REV [mg]
AQy = A~ second or phase 2 volume in a REV [mg]

INTRODUCTION

In a heterogeneous medium the phenomena in each
of a two- (or more) phases are considered as a major

with physical impacts. The great number of facts evi-
dence in a favor of interface physical processes are be-
ing the important component of a process or transport.
There is the need to understand the physics and to
model multiscale characteristics in heterogeneous me-
dia.

The suggested study is pointing out on using the
very established in thermophysics and fluid mechan-
ics theoretical tools of heterogeneous media scaled de-
scription - volume averaging theory (VAT), to address
the problem of multilayer bulk cross-section and in-
plane properties. Multiscale problems of this type have
mostly been solved using ensemble averaging to couple
the phenomena at the different scales, a correct pro-
cedure for variables and fields of homogeneous nature
(excluding dynamics and other features involving dif-
ferential operators). The focus of this work is transport
phenomena in media having distinctive heterogeneous
characteristics consisting of two or more phases at the
upper scale in an area of promising application. The
VAT provides the tools of doing analysis of the het-
erogeneous experimental data on the basis of heteroge-
neous theory - not homogeneous classical mathematical
models and equations.

The main point in this - if at any scale there is of
physical consideration, in which can be claimed, or
there is sure or almost sure, or one can prove it or
substantiate it - that the coeflicients are known and
justified for this medium. Which is especially good
when the start is with the lowest scale possible. Then,
there is need to know the properties of the higher level
of material’s organization. The problem as it can be
written within the VAT and from this point it is the
clear connection of structure, morphologies and prop-
erties. The problem that calculation and solution of
integro-differential equations are not known for most
in analytical and in numerical forms. Still, for simplest
morphologies are solvable problems out there.

Among the important features of VAT are that it al-
lows specific medium types and morphologies , lower-
scale fluctuations of variables, cross-effects of differ-
ent variable fluctuations, and interface variable fluc-
tuations effects, etc. to be considered. We consider
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here mostly the influence of interface transport on bulk
properties in layered morphologies.
Non-Local

Electrodynamics and Heat Transport in

Superstructures

Many microscale heterogeneous heat transport equa-
tions and some of the solutions provided elsewhere
(Chen and Tien 94; Chen 97; Goodson and Flik, 1993)
bare a substantial analysis and many advancements.
Goodson (1996), for example, directly address the need
to model the nonhomogeneous medium (diamond CVD
layer) thermal transport with account to grains pres-
ence. The Peierls-Boltzmann equation for the phonon
transport equation was used along with information
on grains structure. Meanwhile, micro- and nanoscale
thermal transport is indissolubly tight to electrody-
namics in the same material. A full description of the
derivation of the VAT non-local nanoscale electrody-
namics governing equations is given by Travkin and
Catton (2001). These equations and some of their vari-
ations as, for example, the electric field wave equation
for the lower scale (in matrix)

OE,, 0%E,, .
szm_umamW_umng: v (p_) . (1)

which becomes on the upper scale

v (<sm>ﬁm)+v- L/Emd;m +

AQ
OSms
1 S LB, P,
*m/ VB - dsim =i =g, fmEm ™5 F
OSms
AV (5,0 + g [ Pl @)
e Sm/) Pm EmAQ PmASm,
OSms

form a basis for modeling of electric and magnetic
fields at the microscale (upper scale) level in het-
erostructures. As it can be observed the most advan-
tages feature of the heterogenous media electrodynam-
ics equations is the inclusion of terms reflecting phe-
nomena on the interface surface 0S,,s, and that fact

can be used to incorporate morphologically precisely
multiple effects occurring at the interfaces.

The most common way to treat heterogeneous prob-
lems has been to seek a solution of detailed microscale
mathematical model by doing numerical experiments
over more or less the exact morphology of interest
- what can be called the Detailed Micro-Modeling
(DMM) which often conducted using Direct Numeri-
cal Modeling (DNM). Consequently, the questions arise
concerning the issues of difference between DMM-DNM
and Heterogeneous Media Modeling (HMM) which is
the modeling of overall averaged in some way medium
properties.

Three driving forces can be mentioned while
explaining the need for each sounding physi-
cal scale description and connection, transfor-
mation from and between the lower and upper
levels.

I) The experimental abilities and comparison
of measured field’s variables with those which
are considered as physically meaningful at the
both scales. It is actually always an experiment
is made on the only one scale - mostly on the
upper scale of material or medium, because the
practical needs mostly concern the upper scale
properties.

IT) Thus, modeling needs on the upper scale
of hierarchy. Without proper theoretical model
of upper scale (heterogeneous scale) phenomena
neither measurements nor theoretical analysis is
correct or complete.

IIT) Also, it is hard to pose a goal to improve
characteristics or functionality in the problem
without proper theoretical model and under-
standing of the phenomena in both scales.

The most sought after characteristics in heteroge-
neous media transport which are the effective transport
coefficients can be correctly determined using conven-
tional definition

1
—{5) = 0"V {®) = 2V (B) (01— ) 55 / Vo du.
AQy
while employing the DMM-DNM exact solution in
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only the fraction of problems. The issue is that in ma-
jority of problems, as for inhomogeneous, nonlinear co-
efficients, for example, and in many transient problems
having the two-field DMM-DNM exact solution is not
enough even to find effective coefficients.

Effective Coefficients Modeling

Starting, we choose the conductivity problem and
first will be treating the example of constant phase con-
ductivity coefficient conventional equations for the het-
erogenous layered medium. As shown elsewhere (see,
for example, Travkin and Catton, 1998) this mathe-
matical statement is incorrect when the equation ap-
plied to the volume containing both phases, even when
coefficient k (r) is taken as random scalar or tensorial
function. The reason for that is incorrect averaging
over the media which have discontinuities.

Conventional theories of treatment of this problem
do not specify what is the meaning of the field 7', as-
suming that it is the local variable, or - T" = T'(r),
where at the point r there is the point value of poten-
tial T' exists. Meanwhile, what is the point value on
the upper scale then, due to nature of heterogeneous
medium is a domain, volume of heterogeneous nature
on the lower scale. Next, the microscale analysis shows
that the coefficient k£ = k (r), as long as in each sepa-
rate lower scale point r there is exists the local k& with
the value either of phase 1 or phase 2, and in each of
the phases the value of k; is constant.

In the DMM-DNM approaches the mathematical
statement usually deals with the local fields and as
soon as the boundary conditions are taken in some
way, the problem became formulated correctly and can
be solved exactly as in work by Cheng and Torquato
(1997), for example. Difficulties arise when the result of
this solution needs to be interpreted - and this is in the
majority of problem statements in heterogeneous me-
dia, in terms of non-local fields, but averaged in some
way. The averaging procedure usually is proclaimed in
one of the fashions - either doing stochastic or spacial,
volumetric integration. Almost all of these averaging
developments are done incorrectly due to disregard of
averaging theorems for differential operators in hetero-

geneous medium on the upper scale of material.

Let us consider the conductivity problem in a two-
phase medium. According to most accepted mathe-
matical statements the standard definition of effective
(macroscopic) conductivity tensor determines from the
following equation

() = =k (VT (3)

in which assumed that

() = =k (VD) =ko (VT)y = =k (VT) = =KV (T

=~k [( VT)y + { VT)y) = —kj; ( VT), = kj; ( VT),
(4)

so, for usually assumed an interface 951, physics the
effective coefficient determines

Ky = [V ((m) 1)) + k¥ ((ma) T2) +

1 - _
+ (k= 1) 3 / Todsy | (VT) ', (5)
0512

__involving knowledge of three different functions T 1,
Ty, T o5y, in the volume 2. This formula for the steady
state effective conductivity can be shown is equal to the
known expression

K (VT) = RV (T) + (k1 — k) ﬁ / VT dw —
AQq
= BV (T + (ks — ka) { VT, . (6)

It is worth to note here that the known formulae for
the effective heat conductivity (or dielectric permittiv-
ity) of the layered medium (Figs. 1-2)

=) (mi) ki, i= 1,2, (7)

i=1

for field applied in parallel to interface of layers, and
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-1

m;

ke = [Z%] , ®)
i=1

when the heat flux is perpendicular to the inter-
face, are easily derived from the general VAT expres-
sion using assumptions that intraphase fields are equal
Ty = Ty, that interface boundary conditions are valid
for averaged fields, and that adjoining surface inter-
face temperatures are close in magnitudes. The same
assumptions are effectual when conventional analysis
techniques are applied toward the derivation of formu-
lae (7), (8).

The problem becomes not easier in the case when ef-
fective conductivity coefficient meant, for example, as
for the transient heat conductivity problem in compos-
ite material. Combining both temperature equations (
if only two of phases are present) for the simplest case
of constant coefficients one can obtain the effective co-
efficient of conductivity equal to steady-state effective
conductivity only when a local thermal equilibrium is
assumed

()= (s)Ti+ () =T =Ty =T (9)

As the number of layers in superlattice can be sub-
stantial then the actual response of superlattice and it’s
temperature and heat conductivity coefficient become
a bulk (averaged) quantities. The volume of averaging
can reach a proportion of a superlattice thickness in a
cross-section Fig. 1-3. Then, the number of mathemat-
ical consequences and non-local models can be derived,
with the simplest set of governing equations for the
two-component superlattice.

The case of parallel layers (2 kinds) with d.c. elec-
trical field applied parallel to the boundary surfaces:
2 alternating kind of plates the effective conductivity
coefficient is

iy (1) = [01 (VO (r)); + 02 (VO (r)),] / (VO (r)) =

= [01V (<m1> ‘51) + ooV (<m2) 52) +

1

(2= 7) 55 [ Padsa| /[ VO, + (VE)) =

= ((rl (mq) V(T)l (r) + o9 (my) V&)Q (r)) /

/ ((m2) V&1 (1) + (ma) VB (1)), (10)

in the interface surface flux one half surface integral
eliminates the second surface because their values are
equal and have opposite signs on the left L and right
R interface surface bounding the plate 1, for example,
SO

1

(0'2 — 0'1) E / (I)QdSQ =
0512

AQ) AQ
oL OR

1 1
= (0'2 — 0'1) —/(I)QdSQ - = (I)QdSQ =0.

It is obvious that because the averaged fields ®; (r)
and &)2 (r) are not equal generally, see Figs 3-4, then
the problem of finding the solutions for both phases are
inevitable. Analysis shows that the lower scale linear
function known solutions averaging do not correspond
to the stated problem on the upper scale. This finding
changes the approach for treatment of this problem.

Upper scale conventional equation of electrical field
for which coefficient (10) was found as

AV (an (r) V(o (r))) = 0, r GNQ, R
(@(r)) = (m1)P1+ (m2) Do,

with the boundary conditions (BC) which are not
analogous to the homogeneous heat transfer BC - that
is in the case when we want to analyze and simulate
the problem from the bottom scale up - meaning, from
nanoscale, for example, to microscale
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The different is the situation when one needs to sim-
ulate from the upper scale down. Thus, one can see
that the either of the two ways to solve this problem
demands the solution for the fields ®; and ®, :

1) In the case when one relies on effective conductiv-
ity coefficient - ¢7,, to solve the problem on the upper
scale just from the beginning. For finding the o7, one

needs to know the fields &)1 and 52. Then one needs to
solve the equation

Vo (ohm)V{@@)=0reQ (1)

with the BC on the left hand side of the layer con-
sisting of stack of parallel sublayers

(@ ()] = ((mo) @1+ (ma) B2)| =P,

and on the right side the BC is

@@)lp = ((m2) &1+ () &2)| =@n (12

Actually the second time solution for the field (® (r))
can be avoided if properly set up of the boundary condi-
tions implemented in the solution governing equations
for the ®; and ®,, as we will see below.

2) In the case when one wants to solve the prob-
lem starting from the lower scale simulation - he would
consider the solution of the equation

~ 1 —
V2 (<m1> (I)l) + V- E / <I>1d31 +
0512

1 —
+E / V(I)l 'd81:0, (13)
0512

with account for the conservation of current j at the
interface 051

n-: j1|asm = oin- V(I)1|asl2 = (14)
oo1 - VCI)QLC)SH = n- j2|6512 s (15)

and equation

~ 1 —
VQ ((m2> q)g) + V- E / q)gdSQ +
0512

1 —
+E / VCI)Q 'dSQZO, (16)
0512

with the same conservation law of current j at the
interface 0515 plus the both equations need to have the
BC at the both sides of the superlattice. Let ’s assume
that it would be the Ist kind of boundary conditions
(going from upper scale - down)

= (I)Lu

(@ ()], = (m1) D1 + (ms) B B

(my) &, =0y~ (my) @]L, (17)

and on the right side BC

(my) @4 (18)

=&p — <m2> (52
R R

To find out the local fields ®;and ®, we can do the so-
lution of the homogeneous local set of governing equa-
tions

V- (01V (21 (r))) = 0, 1€,
V- (02V(Q2(r))) = 0, 1€,
with
CI)1|3512 (I)2|3512 ) (19)
n- j1’8512 = o1n- Vq)l‘aslz =
= oo - V(I)2|8512 =n- j2|8512 ) (20)

Dy, = Pp, O1(r)[z=
Op, Do|, = Pr, Po(r)|z = Pk

This set of equations has singularity points where
their interface surfaces are laying on the left or right
boundary surfaces. For example at the point
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¢1’8512 N &y, = ‘1’2’(9512 N Dol . (21)

These singularities should be resolved in the manner
just adopted in other approaches used as, for example,
we can use the generalized BC as

() Bl = () @] =B — (ma) B (22)

(5o 0 8]
lim (i) = (m1)

, £ ell,, (23)

where the sequence ¢ belongs to the field II;in which
the iterations are produced. And

(ma) By, ~ (my) By =0~ (m) o,

e

also on the right hand side boundary R the same
approach is used

() @1l = (ma) | = B — (ma) B, (25)

and

(ma) ol = (my) 2132)R = Oy — (my) 5’1’3‘ (26)

In all of the above only after acceptance of the idea of
potential equilibrium ®; = ®,, the known conven-
tional formula for the effective conductivity will work

ol = (mi)oi, i=12. (27)
i=1

This assumption of potential equilibrium is too ob-
viously inappropriate, then this widely used formula
is incorrect and must be replaced by (10). When
three or more alternating kind of parallel plates (lay-
ers) stacked altogether with electrical field applied par-
allel to the boundary surfaces, then this problem is still
qualified as a symmetrical problem - because transpo-
sition of two middle layers (say 1 and 2) in the REV
does not change the situation with the fluxes to ad-
jacent layers - let’s (1 —2 —3) to be rearranged as

hen will be no difference for the REV av-
eraging: [ (®)] = (ma) By + {my) By + (mg) By =
[(ﬂ) (@}} = (mq) ®1 + (mg) Do + (m3) P3. Meanwhile,
if one to imagine more complicated situation as with
the period: (2—3—1—2—3) when the same three dif-
ferent kinds of layers are organized in the 5 layer stack
periodic medium. It is still the 3 kind plates compos-
ite, but the REV averaged variable will not be equal
to the (12— 3) morphology [(2) <<I)>} = (mg) P, +
<7TZ3> CI)3 + <m1> (I)l + <m2> CI)Q + <m3> (I)g 7é [ < >] =

= (ml) (I)l + <m2> CI)Q + <m3> q)g.

Still, let’s just start with the morphology (1 — 2 — 3)

(2—1-3),t

U\T3(123) =[01(V®), + 02 (VP), + 03 (VP);] / (VP) =

= (0'1 <m1> V&)l + 09 (m2> VE)Q + g3 <m3> V<T>3+

1 1 =
+(01—0'2) AQ/q)ldsl—F(O'l—O'g) AQ/q)ld81+
8512 8513

1 —
+(O’2—O'3) AQ/(I)QCZSQ

0523

/() Vo1 + (ma) V& + (ms) VO, ), (28)

because in the denominator

1 1 1 =
AQ / P d81 + E / P d81 + E q)gdSQ—F
8512 8513 8512

1 - -
Bodsy + — [ Dudsy + — [ Budsy | = 0.
taa | T Rg 3S“+A9/p333
0523 0813 0Sa3

The sum of these integrals should be equal to zero.
Thus, for 3 layers even the potential equilibrium con-
strain won’t help to eliminate the interface surface po-
tential integrals indicating that the charge traversing
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the medium via the surface is the part of the effective
conductivity. And only when conductivities o9 & o3
then the approximation

oy = (mg) o, 1=1,2,3, (29)
i=1

can be used along with the potential equilibrium con-
strain. When more than 3 phases are participating in
the charge transfer then the general approach outlined
above should apply. The 4 phase effective coefficient
would be calculated using the formula (when homo-
geneous morphology conditions are in force, meaning
that medium is periodic with the only one period of

sublayers arrangement)

0'74 = (0'1 <m1> V&;l + g9 (m2> V(AI;Q + g3 <Vq)>3 + gy <Vq)>4

1 = 1 =
+(O’1—0'2)m/(I)ldsl—i‘(()'l—()'g)m/q)ldsl—i‘
6512 6513

1 - 1 -
+(01—U4)m/(pldSl—F(Ug—Ug)m/q)gdSQ—{—
8514 0Sa23

1 = 1 =
+(02—U4)E /@2d82—|—(0’3—0’4)m /@3d83
8524 8534

/ (1) T®1 + (ma) Vs + (ma) Ty + (ma) Vs )
(30)

When electrical field applied perpendicular to the
boundary surfaces of stack of parallel sublayers, and
when two alternating kind of plates present the

medium, then the effective (bulk) electric conductiv-
ity is (Figs. 3-4)

01y = |01 (V@ (2)), + 02 (VO (2)),] / (VP (2)) =

= [mv ((m1> 51) + oV ((m2> &)2) +

+(02—01)$/q’2d§2 /
/ (1) VBy (2) + (ma) V() . (31)

As one can see that in this morphology the only
one coordinate argument is used. The key element
to obtain the simplified formula used in textbooks,
is the recognition that the traversing charge flux at
steady state conditions is the same for both phases
01V®; = 05VP,. That formula may be used for sub-
stitution as V&, = (01 /03) V&1, and the specific as-
sumption for this morphology is that the averaged
variables can be used in this equality (meaning that
alvél = GQVE)Q ), then following the above precau-
tion remarks one can get for this morphology

oy = |((ma) + (ma) 1V /

[(<m1> + (01/02) (ma)) V%l} _

01 g2

= [Z@]_ i=1,2, (32)

g;

= () + gy ]/ | (2224 2220 | -

because if the values ®,(9S12) on both surfaces can
be very close then the term

(o9 —01) ﬁ / Dodsy = 0. (33)

0512
The integral term (33) is never shown up in the ho-
mogeneous heat transfer treatment of this problem.
It is_instrumental to note here that the assumption
01V®; = 05V, is generally not correct - some of
the reasons are evident when we recognize the lower
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scales phenomena see, for example, some of them in
Figs. 3-4, but

01 (V@ (2)); = 02 (V® (2)),,

is correct. More complicated cases when number of
phases are more than 2 and interface transport includes
the longitudinal component should be the subject of
similar study.

CONCLUSIONS

This work presents a new approach for the modeling
of layered superstructures and possibilities for design.
The theoretical proof of direct dependencies between
the morphology of the medium and the transport equa-
tions on two scales have been presented. They were
strictly derived and compared for macroscale transport
for canonical morphologies. Derivation of dc VAT ef-
fective coefficients models shows that the conditions for
the upper and lower boundaries in effective composite
medium approximations as the boundaries of laminated
medium assumed are usually not met.

Effective coefficient VAT models as for conductivi-
ties, dielectric permittivity, magnetic permeability, and
reflection coefficient are done at present time on the ba-
sis of homogeneous medium governing equations. The
models for coefficients constructed on the basis of ho-
mogeneous medium provisions do not reflect the most
influencial and dominant physical phenomena in the
heterogeneous media, as - polarizations, microscale het-
erogeneities, interface demagnitization microfields, do-
main walls collective as well as individual behavior, in-
terplay of different effects etc.

Those described features are the part of the VAT
physical and mathematical formulations of problem.
Different methods of calculating complex effective co-
efficients as conductivity or permittivity of heteroge-
neous media are used right now, as: composite approx-
imation, Bergman-Milton theory, Grain Consolidation
Model, local porosity theory, etc. The VAT present
the possibility to form the basics of methodology for
thermal transport, fluid mechanics, and electrodynam-
ics experimental data reduction for porous and hetero-
geneous media. Few heterogeneous media experimen-

tal approaches in thermal physics, fluid mechanics and
electrodynamics, started analysis based on the VAT
tools are just having few initial steps (Ponomarenko
et al., 1999a,b; Ryvkina et al., 1998,1999; Travkin et
al., 2001a,b).

Accurate evaluation of various kinds of medium
morphology irregularities results from the modeling
methodology once a heterogeneous medium morphol-
ogy is chosen. An attempt was made to address classi-
cal morphologies with irregularities associated with dif-
ferent specific kinds of scale morphology and to quan-
tify the impact of morphology on the mathematical
forms of the electrostatic and transient effective coef-
ficients in VAT governing equations in addition to the
impact on the modeling results.

As it appears due to application of VAT models
the issue of effective coefficients in heterogeneous me-
dia is multivariant. Unlike in homogeneous medium,
there are few coefficients can be derived for hetero-
geneous medium transport coefficients which have ef-
fective characteristics. This should find a way to the
design and modeling of experiments in heterogeneous
media.
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Fig. 1 Layered regular 1D medium (2 different component layers) lower

scale flux flow with perfect interface conductance

Experimental

"I QN o Vlc

Fig. 2 Layeredirregular 1D medium (n different component layerslower
scaleflux flow with perfect interface conductance
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Fig. 3 Layered regular 1D medium (2 different component layers) lower

scale flux flow with the second layer globulars of 3 kinds of amorphous

substances (2 gradient and 1 isotropic phases)

X
Fig. 4 The 3rd lower scale averaged EM field {q,} ,,, reflected from

the interface between the second and first layer
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