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solutions of ihe linear quadratic regulator problem, including conditions for
the convergence of modal approximation schemes. However, for more
general optimal control problems invelving PDEs, the main approach-has
been to use some method for constructing a particular finite-dimensional
approximating optimal control problem and then to solve this problem by
some method or other (Teo and Wo [2137]).

1t seems that no attention has been given to the optimal control systems
governed by the partial integrodifferential equations like volume averaging
theory equations for HE design.

B. New KINDs oF Heat ExCranGER MATHEMATICAL MODELS

Qur earlier worle has shown that flow resistance and heat transfer in HEs
and CHEs can be treated as highly porous structures and that their behavior
can be properly predicted by averaging the transport equations aver a
representative elementary volume (REV) in the region neighboring the surface.
The averaging of processes in regular and randomly organized heterogeneous
media and in HE can be perforimed in different ways. Travkin and Catton [21,
28] discussed alternate forms for the mass, momentum, and heat transport
equations recently presented by various researchers. The alternate forms of Lhe
transport equations are ofien quite different. The differences among the
transport equation forms advocated by the numerous authors demonstrate the
fact that research on the basic form of the governing equations of transport
processes in heterogeneous media is still an evolving field of study. Derivation
of the equations of flow and heat transport for a highly porous medium during

_the filtration mode is based on the theory of averaging by certain REV of the
‘transfer equation in the liquid phase and transfer equations in the solid phase
of the heterogeneous medium (see, for example, Whitaker [42, 107 for laminar
regime developments, and Shcherban et al. [15], Primak et al. [14], and
Travkin and Catton {16, 21, 23] for turbulent filiration).

These models acconnt for the medium morphology characteristics. Using
second-order turbulent models, equation sets are obtained for turbulent
filtration and two-temperature diffusion in nonisotropic porous media with
interphase exchange and micro-roughness. The equations differ from those
found in the literature. They were develaped using an advanced averaging
technique, a hierarchical modeling methodology, and fully turbulent models
with Reynolds stresses and fluxes in every pore space.

Independent treatment of turbulent energy transport in the fluid phase
and energy transport in the solid phase, conpecied through the specific
surface (the solid—fluid interface in the REV), allows for more accurate
modeling of the heat transfer mechanisms between rough surfaces or porous
insert of HE and the fluid phases.
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C. YAT-Basep COMPACT HEAT EXCHANGER MODELING

For a pin fin (PFHE), with cross-flow morphology, the govammg
equations can be written in the following form:
Momentum equation for the first fluid:
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momentum equation for the second flnid:
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Energy equation for the first fluid:
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Energy equation for the solid phase:
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Energy equation for the second fiuid:
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The volumes for averaging in equations are AQ, ALy, AQ,, AQ

A majority of the additional terms in these equations can he treated using
closure procedures developed in previous work (see, for example, Travkin
and Catton [16, 19)), for selected fin geomstries and solid matrices of a HE.
Our generic interest, however, is in the theoretical applications of the VAT
goveming equations and possible advantages gained by introduction of
irregular or randomn morphology into heat exchange volumes and surfaces.

Cocurrent parallel flow matrix type CHE morphology can be described
using the next VAT-based set of governing equation,
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Momentum equation for the first fluid:
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Momentum equation for the gecond fluid:
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The corresponding energy equations are like those given earlier. A simple
example typifies the general morphology of cocurrent and countercurrent
CHEs when widihs of the channels are different and the heat transfer
enhancing devices are to be determined by shape optimization. For this
purpose, consider two conjugate flat channels of different heights that are-
both filled with unknown (or assigned) heat transfer elements or porous
media. A set of governing equations for each of the channels were developed
by Travkin and Catton ([ 16, 207).

A model of the momentum equation for a horizontally homogeneous
stream nnder steady conditions has the form
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This equation can be further simplified for turbulent Aow in a layer with a
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porous filling or insert that has repular morphology, : with two morphology terms that “control” the solution being
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It is obvious that the result is “controlled” by three morphology terms. where
The equation for the mean turbulent fluctnation energy b(z) is written in

the following simple form, which includes the effect of obstacles in the flow ds, = —ds.

and temperature stratification across the layer, the z direction:

K If we apply the closure procedures described earlier, the equation of
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with {x, z) € AQ,, and the energy equation in the solid phase
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where index j determines the fluid phase number j=1, 2 in conjugate
channels 1 and 2.

In Eqgs. (444), {443), (450), and (452), the coefficient functions and specific
surface functions must be determined by assuming real or invented mor-
phological models of the porous structure, The pressure gradient term in Eq.
(450) is modeled as a constant value in the layer, or simulated by the local

value of the right-hand side of the experimental correlations. The boundary .

conditions for these equations are
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where h; is the half channel width. The conirol terms in the preceding
cquatlons depend on temperature and velocity distributions as well as on
morphological characteristics of the media.

Comparing the three latest eguation (450)—(452) with the equations
derived by Paffenbarger [206] for practically the same siructural design of
HE, one will find numerous discrepancies. For example, the energy balance
equations in Paflenbarger’s [206] work have energy conservation terms that
do not match each other.

The VAT-based general transport equations for a single phase fluid in an
HE medium have more integral and differential terms than the homogenized
or classical continuum mechanics equations. Various descriptions of the
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porous medium stroctural morphology determines the importance of these
terms and the ranpge of application of the closure schemes. Prescribing
regular, assigned, or statistical structure to the capillary or globular HE
medium morphology gives the basis for transforming the integrodifferential
lransport equations into differential equations with probability density
functions governing their stochastic coefficients and source terms. Several
different closnre models for these terms for some uniform, nonuniform,
nonisotropic, and specifically random nonisotropic highly porous layers
were developed in work by Travkin and Catton [16, 17, 23], etc. The natural
way to closc the integral terms in the transfer equations is to attempt to find
the infegrals over the interphase surface, or over outlined areas of this
surface. Clesure models allow one to find connections between experimental
correlations for bulk processes and the simulation representation and then
incorporate them into numerical procedures.

D. OrptiMAL. CoNTROL PROBEEMS IN HEAT EXCHANGER DISIGN

A variety of the optimization problems that can be formulated in the area
of heterogeneous medium transport involve differential equations modeling
the physics of the process. Many of them have a fairly complicated form.
The contemporary literature on optimal control deals with problems that
are mathematically similar but consider much simpler formulations of the
optimization problem with constraints in the form of differential equations.
Linear optimal control sysiems governed by parabolic partial differential
equations (PPDEs) are relatively well studied. The CHE modeling equa-
tions resulting from the VAT-based analysis are also PPDEs, but they are
nonlinear and have additional integral and integrodifferential terms. The
models presented and the resulting differential equations contain additional

_ iniegral and integrodifferential terms not studied in the literature.

The performance of a heat exchanger depends on the design criteria for
optimizing the liquid flow velocity, dimensions of the heat exchanger, the
heat transfer area between hot side and cold side, etc. Thermal optimization
of an HE requires selection of many features—for example, both the
opiimum fin spacing and optimum fin thickness, each determined -to.
maximize total heat dissipation for a given added mass or profile area. These
criteria set the optimal conditions for HE operation. Theoreticaily, the
optimal dimensions of an I1E require a large number of tiny tubelets with
diameters tending to zero with increasing number of tubes. This leads to a
very fine dispersion problem with porous medium—like behavior. Extremely
compact micro heat exchangers with plate—fin cross flow have already been
buill. However, the optimization problems involving such designs are more
complex than traditional designs and require new simulation techniques.
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E. A VAT-Basep OpriMizATION TECHNIQUE FOR HEAT EXCHANGERS

A variety of optimal control problems that can be formulated in the area
of heterogeneous medium transport involve differential equations modeling
the physics of the process. Some of them have a fairly complicated form.
Meanwhile, the contemporary literature on optimal control considers too
simple formnlations of the optimization problems with constraints in form
of diflerential equations.

Optimal control systems governed by parabolic partial differeniial equa-
tions have been studied intensively. For example, Ahmed and Teo [214] give
a survey on main resulis in this field. Questions concerning necessary
conditions for optimality and existence of optimal controls for these
problems have been investigated in work by Ahmed and Teo (215-217] and
Fleming [218]. Moreover, a few results by Teo et al {1980) on the
compuiational methods of finding optimal controls are also available in the
literature (Teo and Wu [213]). However, turbulent transport equations in
highly porous media were proposed by Travkin et al. [19] for optimization
problems and developed in more detail in Section IV with additional
“morphlogical” as well as integral and integrodifferential terms. Recent
literature studies show optimal control problems involving PPDE either in
general form or in divergence form and propose compuiational methods
such as variational technique and gradient method (see, for example, Ahmed
and Teo [214]). These studies seems to be helpful for solving various
optimization problems involving integro—differential transport equations
considered by Travkin et al. [19]. However, complete research has to be
done for this class of equations, including analysis of necessary conditions
‘and existence of optimal control, as well as developing computational
methods for solving various optimal control problems.

Optimal control for some classes of integrodifferential equations has also
been considered in recent years. Da Prato and Ichikawa [219] studied the
quadratic control problems for integrodiffereniial equations of parabolic
type. A state-space representation of the system is obtained by choosing an
appropriale product space. By using the standard method based on the
Riccati equation, a unigue optimal eontrol over a finite horizon and under
a stabilizability condition is obtained and the quadratic problem over an
infinite horizon is solved. Buikovski [220] was the first to discuss the
optimal control problems for distributed parameter systems. The maxinmum
principle as a_set of necessary conditions for optimal control of distributed
parameter systems has been studied by many authors.

Since it is well known that the maximum principle may be false for
distributed parameter systems (see Balakrishnman [2217), there are many
papers that give some conditions ensuring that the maximum principle
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remains true (see, for example, Ahmed and Teo [2147]; Balakrishnan [2217;
Cuitain and Prilchard [222]). We note that the references just mentioned
discuss the cases for distributed parameter systems or functional differential
systems with no end constraints andfor with the control domain being
convex; thus, they do not include Pontryagin’s original result on maximum
principle as a special case.

Fattorini [223] also proposed an existence theory and formulated maxi-
mum principle for relaxed infinite-dimensional optimal control problems.
He considersd relaxed optimal control problems described by semilinear
systems ODE and used relaxed controls whose values are finitely additive
probability measures. Under suitable conditions, relaxed trajectories ¢o-
incide with those obfained from dilferential inclusions. The existence the-
orems for relaxed controls were obtained; they are applied to distributed
parameter systems described by semilinear parabolic and wave equations, as
well as & version of Pontryagin’s maximum principle for relaxed optimal
control problems.

Optimal control problems involving equations such as (432)-(438) have
control terms with the structures
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- with controls f3, f3, f, f4. Such statements of the control problem are hardly

seen in the contemporary literature on optimal control distributed-par-
ameter systems (see, for example, Ahmed and Teo [2147). The existence of
optimal controls for equations much simpler than those here were developed
only very recently; see Fattorini [223]. Thus, for linear heat- and mass- -
diffusion problems with impulse control that is a function of magnitude or
spatial locations of the impuises, Anita [224] obtained a formulation of
maximum principles for both optimal problems. Ahmed and Xjang [225]
proved the existence of optimal controls [or clear nonlinear evolution
equations on Banach spaces with the control term in the equations being
represented as an additive-multiplicative term B(£)uft).

Reduction of “hererogeneous” terms in the corresponding momentum
equation by an overall representation of diffusive and “diffusionlike™ terms
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yields
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Here, the velocity and Auctuating viscosity coefficient variables are taken in
a form suitable for both laminar and turbulent flow regimes. For problems
with a constant bulk viscosity coefficient (K, = constant), the second term
in this relation vanishes and the whole problem essentially becomes one of
evaluating the influence of dispersion by irregularities of the soil mediom on
the momentum. Thermal dispersion effects realized through the second
derivative terms and relaxation terms and, for example, in the fluid phase
with constant thermal characteristics heat transport dispersion can be
expressed as
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where the first and last teoms reserble the effective thermal conductivity
coefficient. for each phase, using constant coefficients, found in the work by
Nozad et al. [40]. By allowing the control terms to be added to the bulk
transport coefficients, another variation of a mathematical statement for
optimal control can be found. _

As far as optimal control problems with PDE dynamics are concerned,

" one can find a detailed solution of the linear quadratic regulator problem,
including eonditions for the convergence of modal approximation schemes.
However, for more general optimal control problems involving PDE, the
main approach has been to use some method for constructing a particular
finite-dimensional approximating optimal conirol problem and then Lo
salve this problem. The relationship between the solutions and stationary
points of the approximating optimal control problem and those of the
original optimal control problem is nol established in these papers.

For the models and differential equations describing HEs to be useful, the
additional integral and integrodiflerential terms need to be addressed in a
systematic way. VAT has the unique ability to enable the combination of
direct general physical and mathematical problem statement analysis with
the convenience of the segmented analysis usually employed in HE design.
A segmented approach is a method where overall physical processes or
groups of phenomena are divided into selected subprocesses or phenomena
that are interconnected to others by an adopted chain or set of depend-
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encies. A few of the obvious steps that need to be taken are the following:

- Model what increases the heat transfer rate

. Model what decreases of flow resistance (pressure drop)

3. Combine the transport (thermal/mass transfer) analysis and structural
analysis (spatial) and design

4. Find the minimum volume (the combination of parameters yiclding a
minimum weight HE)

5. Include nonlinear conditions and nonlinear physical characteristics

into analysis and design procedures

[

The power and convenience of this method is clear, but its credibility is
greatly undermined by variability and freedom of choice in selection of
subportions of the whole system or process. The greatest weakness is that
the whole process of phenomena described by a voluntarily assigned set of
rules for the description of each segment is sometimes done without serious
consideration of the implications of such segmentation. Strict physical
analysis and consideration of the comsequences of segmentation is not
possible without a strict formulation of the problem that the VAT-based
modeling supplies. Structural optimization of a plate IIE, for example, using
the VAT approach might consist of the following steps: (1) optimization of
the number of plates, plate spacing and fin spacing; (2) optimization of the
fin shape; (3) simultaneous optimization of multiple mathematical state-
ments. This approach also allows consideration and description of hydraul-
tcally and thermaily developing processes by representing them through the
distributed partial differential systems. ) '

X. New Optimization Technique for Material Design Based on VAT

A variety of optimal control problems that can be formulated in the area
of heterogeneons medium transport involve differential equations maodeling
the physics of the process. Many of them have a fairly complicated form,
and the contemporary literalure on optimal control considers much simpler
formulations of the optimization problems with constraints in form of
differential equations.

When the diffusion equations are written in nonlocal VAT form, there are
additional terms appearing in the mathematical statements. These terms can
be considered to be morphology controls involving differential and integral
operators. The nonlinear diffusion equation written without source terms
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has three control terms,
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where the morphology characteristics set M, contains many parameters, w,,
such as phase fraction {s,» and specific susface area 85,,,
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Additional equations are
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A temperature control equation for the solid phase with the two morphol-
ogy control lerms can be wriltten
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These terms are not equal and their calculation or estimation presents a
challenge. However, these are the real driving forces that will differentiate
the behavior of one composite from another. Their application will lead to
a direct connection between design goals and morphological solutions.

XI. Concluding Remarks

Determination of the effective parameters in model equations are usually
based on a mediummn morphology model and there are dozens of associated
quasi-homogeneous and quasi-siochastic methods that claim to accomplish
this. In most cases, quasi-homogeneous and quasi-stochastic methods have
no well treated solutions and, most important, they are not sufficient for
description of the physical process features in heterogeneons media, especial-
ly when treating a multiscale processes.

The hierarchical approach applied to radiative transfer in a perous
medium and to the electrodynamics governing equations {Maxwell’s equa-
tions} in a heterogeneous medium vielded new volume averaged radiative
transler equations-— VAREs. These equations have additional terms reflect-
ing the influence of interfaces and inhomogeneities on radiation intensity in
a porous medium and, when solved, will allow one to relate the lower scale
parameters to the upper scale material behavior. The general nature of this
result makes it applicable to any subatomic particle transport, including

" neutron transport, as well as radiative transport in the heterogeneous media

field. Direct closure based on theoretical and numerical developments that
have been developed for thermal, momentum, and mass transport processes
in a specific random porouns and composite medinm established a basis {or
closure modeling in problems in radiative and electromagnetic phenomena. -
In this work, transport models and equation sets were obfained for a
number of different circumstances with a well substantiated mathematical
theory called volume averaging theory (VAT) that included linear, non-
linear, laminar, and turbulent hierarchical transport in nonisotropic hetero-
geneous media, accounting for modeling level, intcrphase exchange, and
microroughness. Models were developed, for example, for porous media
using an advanced averaging technique, a hierarchical modeling methodol-
ogy, and fully turbulent models with Reynolds stresses and fluxcs. It is worth
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noling that nonlocal mathematical modeling is very diflerent {from hom-
ogenization modeling. The new integrodifferential transport statements in
heterogeneous media and application of these nonclassical types of equa-
tions is the corrent issue. The theory allows one to take into consideration
characteristics of multicomponent multiphase composites with perfect as
well as imperfect morphologies and interphases. The transport equations
obtained using VAT involved additional terms that quantify the influence of
the medium morphology. Various descriptions of the porous medinm
structural morphology determine the importance of these terms and the
range of application of closure schemes.

Many mathematical models currently in use have not received a critical
review because there was nothing to review them against. The more
common models were compared with the more rigorous VAT -based models
and found deficient in many respects. This does not mean they do not serve
a useful purpose. Rather, they are incomplete and suffer from lack of
penerality.

VAT-based modeling is very powerful, allowing random morphology
fluctuations o be incorporated into the VAT-based transport equations by
means of randomly varying morphoconvective and morphodifusive terms.
Closure of some of the resulting morphofiluctuation in the governing
transport eqguations has been outlined, resulting in some well-developed
closure expressions for the VAT-based transport equations in porous media.
Some of them exploit the properties of available solutions to transport
problems for individual morphological elements, and others are based on
the natural morphological data of porous media.

Statistical and numerical techniques were applied io classical irregnlar
morphologies to treat the morphodiffusive and morphoconvective terms
along with integral terms. The challenging problem in irregular and random
motphologies is to produce an analytical or numerical evaluation of the
deviations in scalar or vector fields. In previous work, the authors have
presented a few exact closures for predetermined regular and random
porous medium morphologies. The questions related to effective coefficient
dependencies, boundary conditions, and porous medium experiment analy-
sis are discossed.

Analysis of heat exchanger designs depends an the heat balance equations
that are widely used in the heat design industry. A theoretical basis for
employing heat and momentum transport equations obtained with volume
averaging theory was developed for modeling and design of heat exchangers.
This application of VAT results in a correct set of mathematical equations
for heat exchanger modeling and optimization through implementation of
general field equations rather than the usual balance equations. The
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performance of a heat exchanger depends on the design eriteria for optimiz-
ing the liquid fow velocity, dimensions of the heat exchanger, the hea‘t
transfer area between the hot side and cold side, etc. However, the optimiz-
ation problems involving such designs are more complex than for tradi-
tional designs and require new optimal control simulation techniques.

A variety of optimal control problems that can be formulated in the area
of heterogeneous medium iransport involve differential equations modeling
the physics of the process. Many of them have a faicly complicated form,
and the contemporary literatare on optimal control considers much simpler
formulations of the optimization problems with constraints in the form of
differential equations, Linear optimal control systems governed by parabolic
partial differential equations (PDEs) are relatively well studied in the
literature. The modeling CHE equations resulting from VAT-based analysis
are also PDCg, but they are nonlinear and have additional integral and
integrodifierential terms.

Tt is well known that some matrix composites {often porous) represent the
promise for design of a series of materials with highly desirable characteris-
tics such as high temperature accommodation and enhanced toughness.
Their performance is very dependent on the volume fraction of the consti-
tuent materials, reinforcement interface and matrix morphologies, and
consolidation. Scale characteristics (nanostructural composites) give the
abnormal physical properties, such as magnetic, and mechanical transport
and state a greatl challenge in formulating the hierarchical models contain-
ing the design objectives.

The importance of the physical processes taking place in a heterogeneous
multiscale—multiphase—composite medinm creates the need for the develop-
ment of new tools to characterize such media. It leads to the development
of new approaches to describing these processes. One of them (VAT) has
great advantages and is the subject of this review.
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solid phase thermal
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K

m
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Pr

Qo
Re,
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par

turbulent kinetic energy
exchange coefficient [m®/s]
turbulent diffusion coefficient
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turbulent eddy viscosity [m?/s]
effective thermal conductivity
of solid phase [W/(mK)]
turbulent eddy thermal
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turbulence mixing length [n]
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averagsd porosity [-]
surface porosity |-}
number of pores |-]
number of pores with diameter
of type i [-]

hid, .
=1 interface surface

5
Nusselt number [-]

pressure [ Pal; or pitch in
regular porous 2D and 3D
medium [}, or phase function
[-]

= Re, Pr, Darcy velocity pore
scale Peclet number [-]

= Re, Pr, particle radius Peclet
number [-]

— ., Prandtl number []
a

¥
outward heat flux [W/m?}
Reynolds nember af pore
hydraulic diameter [-]

_(m)l:uf,,
Ty

. Darcy velocity

Reynolds number of pore
hydraulic diameter [-]

nd 5
=—2F, particle Reynolds
v

nulnber [-]

— Mg

, Reynolds number of

general scale pore hydraulic
diameter [~}

lotal crosg-sectional area
available to flow [m?]
specific surface of a porouns
mediwm &5, /AQ [1/m]
=5,/40 [1/m}
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value in sohd phase averaged
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mean turbulent guantity
furbulent flnctuation value
equilibrinm values at the
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conjupgate varable
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5, =8, cross flow projected area
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T temperature [K] B
T, characteristic temperature for ’
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T solid phase temperature [K]
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v velocity [m/s]
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