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b. Flow Resistance Model 2 The second flow resistance model reflects the
addition of the fluid fluctvation term UMC,:
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c. Flow Resistance Model 3 The Lhird flow resistance model reflects all of
the terms responsible for momentum resistance in a porous meditny
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dx

Using the notation developed earlier for the terms in the momentum
equation (264) leads to a form for each of the flow resistance models that
properly reflects their completeness,

5,0 %(x)

cdz(f_]", Mg, x) = (UMP, — UMFI)/(m-JT) (269)
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— 72
e,(U, My, x) = (UMP, — UMF, + UMC,) / (S—“’(f)zg—-@) (270}
ca‘i(ﬁ’ Mg, x) )
. ‘T2
= (UC, — UD, + UMP, — UMF, + UMG,) / (isw—b‘%m) (271)

Each of the different forms will yield a corrclation of a given set of data.
The problem is that the effects of the different characteristics that are
manifested in the terms in the equations are lost from consideration. If
prediciive tools are to be developed, consideration must be given to-the
impact of the details that the terms reflect.

3. Scaling in Pressure Loss Experiments and Data Analysis

Direct use of any Ergun type [riction factor in a Fanning or Darcy friction
factor correlation is incorrect. Ergnn [167] suggested two types of friction
factors, one of which is the so-called kinetic energy friction factor f,, which
differs from the Fanning friction factor by a factor of three for the same

medium:
_ Ay (AP\_ S Q72)
F 2 \ L 37 _ .

For the same reason, direct implementation of the cotrelations given by
Kays and London [172] should be treated with care. For example, the
correlations for friction factor (Fapning) given by Kays and London for
fiow through an infinite randomly stacked, woven-screen maltrix uses surface
porosity p, and specific surface af1/m] to define a hydraulic radius ry,

p_ amd

o S

Yy =
Here the specific surface S, is defined as the interface surface divided by the
volume of the REV. Unfortunately, the surface porosity {my, and volume
porosity {m) are not of the same value and even if they were, the expression
differs from that found earlier by a factor of 2.

Bird et al. [173] used the ratio of the “volume available for flow” to the
“cross section available for flow” in their derivation of hydraulic radius ry,-
This assumption led them to the formula

mdd,

Fop = -—mal oy (273)
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It would be double this value if a consistent definition were used for all
systems,

Ay Amy _ Kmy :
= T al = (my) 30— <m) d, = 4Ty, (274)

where a, is the “particle specific surface” (the total particle surface area
divided by the volume of the particle), and

S, = a1 — (). (275)

The expression given by (274) is justified when an equal or mean particie
diameter is

which is the exact equation for spberical particles and is often used as
substitution for granular media particles. The value of hydraulic radius
given by Bird et al. [173], (273), was chosen by Chhabra [174] and was used

in determining the specific friction factor in capillary media.
Media of globular morphologies can be described in terms of S, {m>,
and d, and can generally be considered to be spherical particles with

6(1 — {my) 2 {mp
Sw = d EEE—— dh = 3 t_i - P

) 0=y
. This expression has the same dependency on equivalent pore diamefer as
found for a one-diameter capillary morphology, leading naturally to

§ = 61 —(m)) 61— {my) Ay

d, 3 (1 — (m)) d dy,
2 dm b

This observation leads to defining a simple “universal” porous medivm
scale,

(276)

277N

_AKm)
=

w

d,=d,, {278)
that meels the needs of both major morphologies, capillary and globular. A
large amount of data exists thai demonstrates the insufficiencies of the
Frgun drag resistance correlation (287). Because it was developed for a
specific morphology, a globular “grapular” medium, application of the
Ergun correlation to a medium with arbitrary relationships between poros-

ity {m), specific surface §,,, and pore (particie) diameter d, can Jead to large
ErTOors.
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The particle diameter 4, is often used as a length scale when reducing
experimental data. Chhabra [174], for example, writes the friction factor

£ = d, Ap
@ dmdiput L ?
This friction (actor can be related to the friction factor f,» given by Eq.

(6.4-1) of Bird et al. [173], to the Fanning friction fator f, and to the Brgun
kinetic energy friction factor f,,, as follows: \

PO 1—{mpy 1— {m) 30

These models all nse different length scales, leading to large uncertaintics
and confusion when a correlation must be selected for a particular applica-
tion. Little attention is paid to these differences, often requiring new
experimental data for a new medium configuration.

Only a few of the many issues important to modeling of pressure loss in
porous media are addressed here. As it is known, the two-term quadratic
Reynolds-- Forchheimer pressuge loss equation is

{279

AP e = 1
A apUmy + fp, U % a = T (281}
n

By comparison with the simplified VAT (SVAT) momentum equation for
constant morphological characteristics and fow field properties and only
the resistance coefficient ¢,

AP S, \p,0* .
L= Ca (m) 5 - (282
a set of transfer relationships can be found to transform Ergum-type

correlations and the SVAT expression. The transfer formula (Travkin and
Catton [21]) is

cg=Jp= [—E% + ﬁ(}ﬂ)](z(m)j), (283)
PjU S .
where
L= o (=)
o= 150 ddﬁ ek f=175 Mdp(rn>3 . (284)
or _
cd:ffzi‘;—JrB, A=8“<ST>3, B=2ﬂ<_’;'->i, (285)

por w w
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where

B 4I:f<n1}
Cpor = vS,

The Ergun energy friction factor relation can be written in terms of the
" VAT-based formulae (Travkin and Catton [21]) as

Ap S, \ p,U?
I

If the Ergun correlation is wrillen using common nolation, it becomes

i— 2 = i— =,
Ap (150 (—:E(%%?—) umyU + (1.75 -{ﬁ(—i;a——i?l) pf<m>2U , 1287

and if it can be further transformed to the (SVAT) Fanning [riction factor,
then

. Ay " . 50(1 — {m)) 35
= {2 T M) R =-=0.583, (288
fﬂ R3P+ BP’ AP ( <ﬂl> P 6 ( )
where the particle Reynolds number is
Re, = (Td ), (289)
and ]
X 1
= Ad £+ B, wilth A% = _%Q =133.33, and B% = B}¥ =0583,
Re,,,
(290)
where ) _
Ud, 2 <my Ui, (3(1 - (m})) 0d,
—_—— e — ————— T — d R E— = Re, =—.
Rep === =30 qmy) v ° 00 o2 rT Ty

(291)

The common scaling length just derived will allow a great deal of da?a to
be brought to a common basis and allow grealer confidence in predictions.

4. Simulation Procedures

A large amount of data exists that demonstrates the inadequacies of the
Ergun drag resistance correlation (287). This is because the Ergun correla-
tion is nsed with arbitrary relationships between porosity {m), specific
surface S,,, and pore (particle) diameter d, when it was originally developed
for granular media. How unsatisfactory it can be is shown in Fig. 5.
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¥1G. 5. Fanning friction factor f, {bulk flow resistance in SVAT for different medium
morphalogies, materials, and scales vsed), reduced based on VAT scale transformations in
experiments by 1, Gortyshov et al. [175]; 2, Kays aod London [172]; 3, Laminar, inteymediate,
and turbulent laws in tube; 4, Gortyshov et al. [176]; 5, Beavers and Sparrow [l?li]; 6, SiC
foam (UCLA, 1997); 7, Exrgun [167]; 8, Souto and Moyne [181]: 5, Macdanald et al. [1807; 10,
Travkin and Catton [23].

With specifically assigned morphology characteristics (primarily S,,), the
Ergun drag resistance correlation will be much closer to correlations by
Beavers and Sparrow [177] and Gortyshov et al. [176], as shown in Fig. 5.
A similar behavior was seen between the Ergun drag resistance correlation
and the drag resistance correlation by Gortyshov et al. [175].

Several other correlations are compared in Fig. 5. Gortyshov et al. [175]
experimentally derived correlations for the Reynolds—Forchheimer momen-
tum equation in the form

a = 6.61-107(d,)” 2B (m)~H T, (292)
B =5.16-10%(d,) 10T (m)i"11-19), (293)
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where hydraulic diameter d,(mm) is

djm]

4 = 5001 [m]’

(294)
These correlations have to be used in (285) and are for ‘Thighly porous
({m> = 0.87-0.97) foamy netallic media. A Darcy type ol friclion factor
obtained by Gortyshov et al [176] for very low conduclivity porous
porcelain with high porosity is

- fp(Re) = % (1 +2.5-107%(m) " **Re,), (m) =083 + 0.92, (295)

where

E‘dﬁm)
g =—""
¥
To transform this correlation, the Reynolds number must be transformed
and the result divided by 4 to yield the Fanning friction factor,

Fr(Re o) :% (Re:,(}(m) (1 + 2.5 10_2(711}_3'8Repor(m>)), (296)

with
Repur = Rel|/<m> (297)
The correlation derived by Beavers and Sparrow [177] seems to be of
Jittle value in the original form,

. )
Fyy(R,) = =+ 0074, (298)

because the Reynolds number,

R ___M, (299)

W

contains the permeability of the medium and is usually not known. Noting
that, as pointed out by Beavers and Sparrow [177] the viscous resistance
coeflicient & = 1/k,,, where kj is the Darcy permeability, and uvsing the
transformation

1
Fu=gt NS (300)

where

PR
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R, — A (301)

4 (4 s
R = R - = _R_ = ¥ 3
epar W Sw,\/k_D w\/; (Sw)v Rw Repur (4\/&)3 ( 02)

vields
1
Fis + /K
b, U(m)Jl;? ﬁ I
Vv
or
1 AP '
ru) = — (52} 303
il \/;:_tpf U2(m)* \Ax (30%)
and when compared to
24m)y (AP)
FrRepd =—="7\ %} 304)
I po o UISW Ax (

one obtains

SR )=(~‘—)L~@E>.(M)
e Jagmy?/ p, U \Ax s,
= F,(R,) (2*_\/.%@3_) | .

This means that the Fapning friction factor, f;, can be assessed from the
friction factor suggested by Ward [178] and Beavers and Sparrow [177],

fpse from
3
SR = Fu(R,) (z—fis@'—:’*) (306)

To accomplish the transformation of Fy, to f, the permeability kj, or the
viscous coefficient of resistance a porosity {m) and specific surface S,, must
be known. Estimates of f, were abtained {rom measured values of Fy, for
FOAMETAL (Beavers and Sparrow sample Type C) using

kp =19.01- 10" *[cm?*] = 19.01- 10~ #[m?]
1 1

D
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and Eqgs (299), (298) or (300), and (306} to transformn the Beavers and
Sparrow [177] experimental data correlation to the Fanning {riction lactlor
correlation. With

i
Fbj(Rw) = 'k'_ + 0.074 and Rw = Repor (__‘f_)

Fro(Re,,) = L (4ﬁ) + 0.074, (308)

h)

w

Re,,,

then

f,(Re ) = (-—iu (4ﬁ) + 0.074)(3\_/_"—@3). (309)

Re,, \ S, 8

w

Kurshin [179] has analyzed a vast amount of data using a consistent
procedure he developed to embrace all three flow regimes in porous media.
To carry out the procedure, the following parameters must be known:

_ (a) The viscous resistant coeflicient oy, evaluated for laminar flow in a
pipe from the following:

AP = 1 = di (AP
| 5= aplmptl, oy = -’-{-;, U= 527" (—&J—c-) {310}
(b). A characteristic length d, evaluated by eqnating the preceding ex-
pressions:
32 \'M2 32k \'7?
d, =|— = 2] . .
! (al(m)) ((m)) (311)

(This is only justified for straight parallel capillary morphology wherc
d,=d,)

(c) Critical numbers Re,, and Re,; to distinguish the viscous, transi-
tional, and turbulent filtration regimes.

(d) Dimensionless viscous &, and inertial resistance f, coefficients in the
turbulent regime. Unfortunately, Kurshin [179] did not present any data for
foam materials and the porous metals he evaluated have low porosity in the
range {my < 0.5 '

Now one can say that by reformulating existing experimental correlations
to the SVAT 1D form,

AP S, \ o, 0
I ff(Repar) ((?ﬂ)) p) L] (3 12)
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the Fanning friction factor correlations can be easily compared with one
another as they have a4 comumon consistent basis. A number of correlations
were transformed and are in Fig. 5. The reason [or the spread in the results
is thought to be inadequate accounting lor details of the mediur.

Analysis of Macdonald et al. [180] reformulated with the help of the
foregoing developed procedures gives the corrected Ergun-like type of
carrelation

40
Sy ==+ 06, (313)

por

Meanwhile, Sounto and Moyne [181], using the DMM-DNM solutions,
came to the number of resistance curves that are separate for each morphol-
ogy. One of them for rectangular rods in VAT terms appears as

i 54.3
ffSM = § f;:er = Repm., Repor -~ 0. (31-4)

V1I. Experimental Veasurements and Analysis of Iniernal
[ieat Transfer Coefficients in Porous Media

A VAT-based approach applied to heat trapsfer in a porous medium
allows one to analyze and measure effective internal heat transfer coefficients
in a porous medium. As noted by Viskanta [182], “Convective heat and
mass transfer in consolidated porous materials has received practically no
theoretical research attention. This is partially due to the complexity which
arises as a result of physical and chemical hLeterogeneity that is difficult to
characterize with the limited amount of data that can be obtained through
experiments.” Viskanta [182, 183] generalized the data be analyzed for
internal heat {ransfer coefficient porous ceramic media using a correlation
of the form

Nu, = 2.0 + aRe"Pr'/3, . (315)

by assuming that the limiting Nusselt pumber should be 2.0 when the Re
decreases to zero. This assumption is only justified for unconsolidated sparse
spherical particle morphologies and is suspect for aother porous medium
morphologies, especially consolidated media. For this reason, some Ié-
searches neglect this artificial low Re limit and correlate their findings
without it. The VAT approach is applied to heat transfer in porous media
to develop a more consistent correlation.
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1. Experimental Assessment and Modeling of Heat Exchange
in Porous Media

The correct form of the steady-state heat transfer equation in the fluid

phase of a porous media with primarily convective 1D averaged leat
transfer 1s

- 3T, k T,
pr.r(’")U L =L xf ds + ks

al(m)'}:}
ox | AQ Jas. 0

ax*
+¢ —“(<m){~—i‘if‘} )-f——a— L3 T.ds |. (316)
rrPr gy T A0 s, T
Equation (316) can be rewritten as

HKm>T a =
&S, (T} — {T}f) = —{ f ox I:% :l + e, Py T (K {—0T},)

a[k - _ aT '
£ f
+o [M sz Tds]} + Cppp > T 5L, (317)

where

k ATy
3 I _
o Ls, Leds = 5 ST} — {Thy)

The right-hand side of Bq. (316) can also be written in the form
N G T, | .
'ITS#({T}: - {T}j) + a Kef_r,g ““3; = ‘ITSW({T} {T}_r) + [ CI; <15

(318)

where the right-hand side (“dilfusive™-like) flux contains more terms than
are conventionally considered:

~ a7,
Q== I:”*Keff.g 5_;]
aT; L, i
= —{{mdk, o ey p (| — 01y}, 46 e Tidsp. (319)
The corresponding equatiun for the solid phase is

¢sH{T), 1 . L[ oL o
ax( Bx +3x A6 | 59| T ag | 3 450 G20

The three terms are written in the following shorthand form:

T.D, + LMD, + T,ME, =0, (321)
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Equation (320) can also be written

0= (kl) S, (T}~ {T}) +a—i (keff-s g%{"}f)

3,

&S, (1), — (T + o [-T] G2

Using the closure term for interface heat flux found earlier (they are
equal),
- . 671; -
&S (T} —{T}) ﬂﬁ-ﬁ o “ds,.
Equation (322) has a term that is usually overlooked (the second ferm on
the rght):

r B{T}s a<3>1 i -
qs,x - (*Keff,s ?) { Bx E _LS“ Tsdsl}. (323)

Three heal transfer coefficient models are needed to properly tie every-
thing together. The first model incorporates only the heat transfer coefficient
between the phases.

a. Model 1 of Heat Transfer Coefficient in Porous Media: Conventional

Modeling If it is assumed that the porous medinm heat transfer coeflicient
is defined by

. k JaT
Ggy == (Aé} j x{ )/[Sw{{T} —{T},)3 ) (324)
then the heat transfer equation becomes

~ 0T, AT,
Cpprr(Jn:}U-E;[:kf Bx[ I f:l

and when the porosity is constant, the equation becomes

%F_ K 3‘3 [‘?f]“ns (T}, — (T}, )<my.  (326)

+ &TISW({T}.: - {T}f): (325)

Cpfpr

Most work uses an equation of this type. The experiments carried out will
reflect the use of Eq. (326), and the data reduction will lead to a correlation
for &p,S,, that is only valid for the particular medium used in the experi-
ment. There will be no generality in the results. By redefining &y, further
medium characterisiics can be incorporated into the correlation. The second
model incorporates velocity and temperature fluctuations.
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b. Model 2 of Heat Transfer Coefficient in T'orous Media: With Nonlinear
Fluctuations If we define the heat transfer coefficient in a way that includes
_ the fluctuations,

ky

_ T, - d s
Lz = (Kf! jaswﬁ;f-ds + CprPy E; ((”1>{*u7}}1))/[5w({7;}s - {Tf}f)ls

(327) |

the second heat transfer model in porous media is almost the same as the
first,

. oT 8 TaemdT,
ot myT 5L =, o [ o ] P ST (T (29)

The third model is obtained by using the complete energy equation for the
finid phase. This is again done by redefinition of the heat transfer coefficient.

c. Model 3 of Heat Transfer Coefficient in Porous Media: I¥ ull Equation
Energy Equation

Ury =

k 2T, - a - 8 Ik -

L vir. a s B[k

(AQ LSW, g 05 Carps g (=0T + 5, Lm st T”“D
ST —{TY,

(329)
The energy equation is again very similar:

- dm>T,
copy im0 L = kg [-fa%i] ¥ ST~ (T G30)
Each of the models reflects the data obtained for a given medium. Only the
coefficient &,,, however, allows for a complete representation of the par-
ameters that reflect the characteristics of the medium. In attempts by some
researchers to improve the modeling, a more complete equation is used
along with the more conventional definitions of 1he heat transfer coefficient.
The relative inaccuracy of substifution of coefficient into the correct nathe-
matical model,

iy 2 o
oYU a—; + CprPy 5 (m>{aT} )

_p ofamT ok g,
_kfa[ 7% +6x[AQLS de.s]+ar3w({’1‘}s—{]‘}f), (330

Aed
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can easily be seen by comparison with the definition of dr5. 'The additional
terms are already a part of the coefficient, and double accounling has
oceurred. The seriousness of such a mistake depends on the problem.

To summarize, the heat transfer coefficients and their respectively Auid

heat transport equations can be written in terms of the notation given by
Eq. (321),

s = (T MEYIS, (T — (1)) (332
k Ty =
(i [, Sds) feser, - (o
Gyp = (T ME, + T,MC/S(T) ~ {1} ) (333)

k aT; = a 7
(3%2 st 3_xf ds+c,rpy E (<Hl>{-—“ﬁ‘1}}f))/‘:sw({r1:}s ~{T30

s = (T, ME, + T,MC, + T,MD S, (T} — {T}), (334
k T, - 2 = o [k [ 13
(35 [ S conr vt s g i |, 7
S.(T3, — (119 -

Substitution of either of the preceding effective coefficients into the
equation '

. 8T T
CppPpmyU '];;f k g [M

d - . .
6’_:: I % e ]"‘ CprfB;Km){*‘Tj“i}j)
3 [k St oT,
-+ Ax [AQ 'st des] -+ Eﬁ _LSW kf ?3?, dS, (335)
T,Cy =T Dy + T, MCy + T,MC; + T ME,,

would result having different models for experimental data reduction and
even for experimenial setup.

2. Simulation Procedures

Kar and Dybbs [ 184] developed several correlations for the internal heat
transfer in different porous media. Their model for assessment of internal
surface heat transfer coefficient is based on the formula (constructed slighﬂy
differently than done by Kar and Dybbs [184] but with all the features)

fr ﬁScr{Cp’.Z'I}Z _irf}l}
S, AQ (T}, —T)) ’

(336)

Ay _xp =
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which accounts for the heat exchange when Ty, and T}, are the tempera-
tures of fluid exiting and entering the control volume, which is taken to be
equal to AQ,, through cross flow surface area S, [m?] with mass flow rate
M= pJ-US [kg/s] This definition of heat transfer coefficient corresponds
to the continuum mathematical model of heat exchange in the porous

medinm formnuiated as
(my(pe,); TV Ty = dr_xoS (T} — Ty, (337)
instead of the correct equation,

my(pe,) TVT; = (pe ), V-(—T;iid, + k, VV(mT))

1 - k,
e T,-ds. 338
+kv[m_[ ‘I}ds:I+AQJ;SWVI s (338)

The last term can be modeled using the heat transfer coefficient givew by

k ar -
Af: L Bx, ds, =878,({T}, — {T}p), (335)

which results from the closure relationship

1 oT - 1 aT
LI A P Y Sy
AG .st-‘ ! B, dsy AG J-asw ! an, 12

1 K ~
= 0 J;SW q;- CISZ = GCTS“,({T}Z — {T}j}- (340)

Kar and Dybbs measured the temperatures T; and T and treated them as
it they were the mean (averaged) temperatures. As a result, they measured
yet another heat transfer coefficient, &y, that is defined by

Bra S, (T} T) = bp_ oS, ({T} — T))
=(pc )V {— Ty, + ke VIO T)
-+ ka [Kﬁ J;‘SW ‘1}de| + E -LSW VTJ- dS. (34])

The sccond and third terms in Eq. (341) are usually negligible. When they
are, the measured heat transfer coefficient reduces to the second heat transfer
coefficient in porous medium &,

&TZSw({T}x — T[) = &T"'KBSW({T}S - Tf)

- k -
= (pc,)} V{— Tl + ;Sé Jasw VT,-ds. (342)
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Fig. 6. Internal effective heat transfer coefficient in porous media, reduced based on VAT
scale transformations in experiments by 1, Kar and Dybbs {184] for laminar regime; 2,
Rajkumar [185]; 3, Achenbach [186]); 4, Younis and Viskanta [187}; 3, Galitseysky and
Moshaev [189]; 6, Kokorev et al, [190]; 7, Gortyshov et al. [175]; 8, Kays and London [172];
9, Heat Exchangers Design Handbook [1917.

This is probably why the correlation developed by Kar and Dybbs [184] is
located low among the second group of correlations in Fig. 6, where a
number of correlations are presented after being rescaled using VAT. If the
measured coeflicient is &, the result will be even lower than &,.

As the number of terms that can be estimated increases, the valne of the
coefficient decreases. This is probably the case with the first group of
correlations shown in Fig. 6. A large amount of the data analyzed by
Viskanta [182, 183] was used to deduce consistent correlations for compari-
son of internal porous media heat transfer characteristics. The same scaling
VAT approach used for flow resistance in porous media is used for heat
transfer.
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Oume of the correlations developed by Kar and Dybbs [184], correlation:
(11) on p. 86, is for laminar flow in sintered powder metal specimens. It i5
D,

i

= 0.004 Ret-2* PriP?, (343)

Nu,

where both Nu and Re are based on the mean pate diameter. If a single
hydraulic diameter d,, 15

4
By =2, (344)
W
then
40
Rey = Repey = 202 (345)

y _
Nu,,(Rey,) = h—‘liﬂ = Nu,(Rey, {m), §,) = 0.004 Rel;25 Prifd, (346)
f

“This correlation is shown in Fig. 6. The correlation developed by Rajkumar
[185] for hollow ceramic spheres i

o

h.d d 077 .
Nu, = 1; =11 (Rep Pr —L‘—’) . (347)
with d, = 25-3.5 [107*m], 18 <Re, < 980, (m) = 0.38-0.39, Pr= 0.71,
and

ud
Re, =—*.
v

The particle Reynolds number Re, can be rewritten using
31 — (my) ,
=Re .| —= . 348
Re, epa,( ST _( )
Nu,, needs to be transformed to Nu,,, by relating the particle diameter d, to
the hydraulic diameter. The result is

ﬁsd,, 2{my
. — Ny =—-> 2 Ny {Re)=
por Af R 31~ {m}) P{ P)

2{my
3(1 — (m))

Nu Nu,(x),

(349)

where

{30 = my)
x = (~~———2<m>-~) Re,,,.
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Then

_ 2(m)_ b
T 611)) Nu,(x, Pr, d, i)

LA (A=)
TR (( 2 )R%w Pr, d,, L)- (350)

Achenbach [186] developed the correlation

Re, \O-T5 A 14
Nu, = {(].18 Ref %)% + [0.23 (——h) ] } , (351)
my)

for Pr=0.71, ¢(m)> = 0387, and 1 < (Re,/{m)) <7.7x 10°. The Reynolds
number nsed by Achenbach is based on hydraulics and

Nu

Rey, = Re,,, {m),
and his definition of N, is
Nu,,,(Re,,) = Nu,(Re,, {m). (352)

A correlation developed for cellular consolidated ceramics by Younis and
Viskanta [187, 1887 is

- hdE L fd,
Nuy === = 0.0098 +0.11 | 7* Rel3Prth3, (353)
£

where (m) = 0.83—-0.87. The correlation yields an increasing Nu,, when the
test specimen thickness is decreased. This is a clear influence of inflow and
outflow boundaries on heat transfer. Transforming from a volumetric
Nusselt number Nu, to a conventional surficial value Nu yields

Nﬂ o Nuuh(Repar<1n>) .

por 4<m> (354)

Viskanta [183] presents a correlation from a study of low porosity media,
0.167 < <m)> < 0.354, by Galitseysky and Moshaey [189]:

Nu,, = A{myt?(1 — {m>)** Re, Pr. (353)
The coeflicient, A given by Viscanta [183] is

A= (37.2 (-‘%) - 0_59) ((md{(1 — <m3)H°s, (356)

for 0.15 < d,/L < 023, 10 < Re, < 530, Pr = 0.71. The volumetric Nusselt
number is transformed to the surficial Nusselt number with Eq. (354).
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A semiempirical theory was used by Kokorev et al, [190] to develop a
correlation between resistance ceefficient and heat iransfer coefficient for
extensive flow regimes in porous media that only contains one empirical
{apparently universal for the turbulent regime) constant. On the basis of this
relationship, the concept of flyctuation speed scale of movement is uged to
obtain an expression for the heat transfer coefficient from the Darcy [riction
factor, fp = 4f; = 4cu:

B hyd,

Nu, 2,

= [0.14(4¢c, Ref)t#* Prif]. (357)

Transforming their expression to the general form of the media Nusselt
number yields

Nu 2{my

or = m Nu,(Re,, {md). (358)

The heat transfer coefficient given in the Heat Exchanger Design Hand-
book [191] is based on a single sphere heat transfer coeflicient for the porous
medium,

- A
fi, = Ff (f,Nu), Nu, =2 + (Nuf + Nud)'2, (359)

p

where
Nu, = 0.664Rej’ Prif?

_ (0.037Re%® Pr)
T + 2.443Re, V(PP 1)

for 1< Re,<10° 06<Pr< 105, and the form coefficient for 0.26
< {md> < 10is

Nuy

fo=1+41501— {m}).

Transformation of the Nusselt number yields

2w
Nitpor = 35~ Gy

Nu,, values at low Reynolds number are unrealistic, leading to the
conclusion that the transition type expression used to treat both laminar
and turbulent flows is probably not adequate for heat fransfer in porous
media.

Gortyshov et al. [175] developed a correlation for the internal heat

transfer coefficient for a highly porous metallic cellular (foamy) medixm

Nu,(Re,). (360)
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with porosity in the range 0.87 < {m) < 097,

h,d7

Ny, = ~2-% = 0.606Pef>5{m> ™2, (361)
r
where
Pe, = Re,Pr = E"‘—:"L‘I" (362)
¥

d, is in millimeters (see (294)), and Nug, is the volumetric internal heat
transfer coefficient assessed using

Bd., (35S o
WA [ Y = §2, 363
() - .
Also,
Nu({m>» Re_,.)
par( epnr 4<nf> ( )
The correlation given by Kays and London [172] is
StPr®®) = 1.4Re; 045, (365)
which is transformed by
NuPyr3 ' -
Re I;‘— == 1.433;,2'45, = Nupm, = 1.4Reﬁ;,f5Pr”3. (366)
por

Some useful observations can be made by comparing the heat transfer
relationships shown in Fig. 6. One of the most significant observations is
that the large differences between the correlations by Kar and Dybbs [184],
Younis and Viskanta [187, 1887, Rajkumar [185], and others cannot be
explained if onme does not take into account the specific details of the
medinm and the experimental data ireatment. Given this, the remarkable
apreement, almost coincidence, of the correlations by Kays and London
[172], Achenbach [186], and Kokorev et al. [190] should be noted. These
correlations were developed using different techniques and basic ‘ap-
proaches. The correlation given in the Heat Exchangers Design Handbook
[191] reflects carefol adjustment in the low Reynolds pumber range. The
correlation is not based on a specific type of medium (for example, a
globular morphology with a specific globular diameter). Rather, it was
developed to summarize heat transfer coefficient data in packed beds for a
wide range of Reynolds numbers using an assigned globular diameter. Asa
result, it is not solidly based on physics, and a simple transformation from,
particle to pore scale does not work properly.
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VI Thermal Conductivity Measurement in a Two-Lhase Medimn

A majority of thermal conduction experiments are based on a constant
heat flux through the experimental specimen and measurement of interface
temperatures. Data reduction (see, for example, Uher [192]) is accomplished
using

QL
K=——, 367
ANT (367)
where Q is the electrical power from heater dissipated throngh the specimen,
I is the distance used to measure the temperature difference, and 4 is the
yniform cross-sectional area of the sample.

1. Traditional Local and Piecewise Distributed Coefficient Heat
Conductivity Problem Formulations

In DMM-DNM as, for example, for a dielectric medium, Lthe equation
usnally used is

V-(kOVT() =0, rel) (368)
where the conductivity coefficient function k 15
K(r) = k() + Loy 0, (369)

and ¥ is the characteristic function of phase i =1 v 2 (see, for example,
‘ Cheng and Torquato [193]). Interface boundary conditions assumed for
these equalifies are

T = (), 1€, (370)
kyfn-VT,(0) = kyln-VT), £ e dS;, (371)

2. Effective Coefficients Modeling

To begin, we choose the conductivity problem and first will be treating
the example of constant phase conductivity coefficient conventional equa-
tions {368) for the heterogenous mediun.

As shown -elsewhere (see, for example, Travkin and Catton {21, this
mathematical statement is incorrect when the equation is applied to the
volume containing both phases, even when coefficient k(r) is taken as a
random scalar or temsorial function. The reason for this is incorrect
averaging over the medium, which has discontinuities.
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Conventional theories of treatment of this problem do not specify the
meaning of the field 7, assuming that it is the local variable, or — T = Tir),
where at the point r the point value of potential T exists.

Next, the analysis shows that the coefficient k = k(r), as long as in each
separate lower scale level point r there exists the local k with the value of
either phase 1 or phase 2, and in each of the phases the value of k; is
constant. .

In the DMM-DYNM approaches the mathematical statement usually deals
with the local fields, and as soon as the boundary conditions are taken in
some way, the problem became formulated correctly and can be solved
exactly, as in work by Cheng and Torquato [193].

Difficulties arise when the result of this solution needs to be interpreted —
and this is in the majority of problem statements in heterogeneous media,
in terms of nonlocal fields, but averaged in some way. The averaging
procedure usually is stated as being done either by stochastic or by spatial,
volumetric integration. Almost all of these averaging developments are done
incotrectly becanse of a disregard of averaging theorems for differential
operators in a heterogeneous medium. More analysis of this matter is given
in work by Travkin et al. [115]3.

Further, a more complicated situation arises when the intention is to
formulate and find effective transport coefficients in a heterogeneous me-
dium. Let us consider the conductivity problem in a two-phase medium.
According to most accepted mathematical statements this problem is given

as (368)-(371).

3. Conventional Formulation of the Effective Conductivity Problem in a
Tvo-Phase Medium

One of the methods of closure of mathematical models of diffusion
processes in a heterogeneous medium is the guasihomogeneons method
(Travkin and Catton [21]). In this case, the transfer process is modeled as
an ideal continnum with homogeneous effective transport characteristics
instead of the real heterogeneous characteristics of a porous medium. This
method of closure of the diffusive terms in the heat and mass diffusion
equations results in certain limilations: (a) the two-phase medium compo-
nents are without fluctuations of the type T, & in each of the phases; and (b)
the transfer coefficients being constant in each of the phases (Khoroshun
[194, 1957) results in reducing them to additional algebraic equations. These

[:quations relate the unknown averaged diffusion flows in each of the phases
in the form

GO+ (s = =k VT, (372)
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when for éonstant (effective) coefficients it is
kel (VT — Koy (VT = —kZ VT, (373)
and also
KNTY ={VT>, +{VT>,, 34
so it might be written as

()2 Reg) TG D = VT (373)

Here ki, k& are the transfer coefficient tensors in each of the phases, and
k¥, is the effective conductivity coefficient. Thus, at Jeast in this case, the
problem of closure has been reduced to finding k.

Applying the closure relation, for example,

KL VT ;= ki VT, (376)
yields the effective stagnant coeflicient

- ki kary
S (g + Kigy)

which represents the lower bound of the effective stagnant conductivity for
a two-phase. material from the known boundaries of Hashin—Shtrikman
(see, for example, [196], Kudinov and Moizhes [197]} for equal volume
fraction of phases. Other closure equations for calculating the stagnant
effective conductivity are found in work by Hadley [198] and by Kudinov
and Moizhes [197]. The quasi homogeneous approach has several defects:
(a) The basis for the quasi-homogeneous equations is in question, (b) the
{ocal fluctuation values, as well as inhomogeneity and dispersivity of the
medium, are meglected, and (¢) the interdependence of the correlated
coefficients and arbitrary adjustment to fit data significantly reduce the
generalily of the results.

@a7h

4. VAT-Based Considerations for Heterogeneous Media Heat Conductivity
Experimental Data Reduction

Let us consider the data reduction procedure of the heterogeneous
material thermai conductivity experiment.

a. Constant Heat Condactivity Coefficient We treat the example of the
constant coefficient heat transfer equation for a heterogeneons medium and
show the problem in terms of conventional experimental bulk data reduc-
tion procedures and pertinent modeling equations.

s
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Consider an experiment on determining the therma! coefficient of phase 1
(for example) in composite (o1 in malerial that is considered as being a pure
subsiance, but really is composile) maferial.

The heat transport for material phase 1 is described by

aT, - 1 o k -

bt Y VA T)+ k| - b VT, dsy,
at I (<81> 1} + 1 [Ag.) J‘aSlz Tldsle-I-Aﬂ J‘BSIE 1 1
which needs the closure of the second and the third r.hs. terms. The latter is

k T -
Kg—l 8512 a.dsl =8, 8,({T}: - {T}h), (378)

{sipe b

where the closure procedure is quite applicable to description of the
fluid-solid medium heat exchange and might be considered as the analogs
for the case of solid—solid heat exchange, as done in many papers. The more
strict and precise integration of the heat flux over the interface surface gives

the exact closure for that term in governing equations for both neighboring
phases.

Also considering the two terms on the r.h.s., having them as diffusion bulk
terms means that

~ 1 e _
k1V2(<S1>T1) =4 kJV'[E J. Tldsl:| =V-[-7,]
. 8512

where the “diffusive™like flux §, contains some more termns than are
conventionally considered,

_ = =~ k - -
Gy = —kep V({5 0 Th) = —k V(5,0 T) —Kéj Tyds,, (379

812

where the heat flux in phase 1 is determined through the averaged tempera-
ture 7.

So, the eflective (not homogeneous) conductivity coeflicient in phase 1 is

~ 1 - _
kora = Ky [W(si)?}) + 45 _LS Tldsl] (Vs DTNt

=k {1 + AIQ f _ Tids, /(V(<s1>i'1n]. (380)

There is a difference between this introduced coefficient k., and that
traditionally determined through the flux in phase 1, which is

Gy = [k (VT = —k, (W(SO'TI) T _[

A T}dsi). (381)

2
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Arising in this sitnation is the effeclive conductivity coeflicient delermina-
tion

. i -
ke,l =k, [V(<51>T1) + AQ J;S Tldsl]/<VT1>1
=ky, (382)

which is a difflerent variable indeed and which is still the one that is not the
traditional effective heierogencous medium heat conductivity coefficient
(determined in all phases),

T = [ —kagrVTY] = — ko [V T + (VT3]
w= kS OTy + 20Ty = —kogy VST, (383)

After those transformations the heat transfer equation in phase 1 becames

aT, = .
<51>(Pcp)1 ‘E} = V-l V(s DT + 8y, 8,({T}, — {T}) (384)
Repeating all of this for the steady-state heat conductivity equation

~ | - 1 -
\'& T, A — T,d = ds, =
(GsHTH+V [Ag Lsu . sl]+AD o VT,-ds, =0, (389

one obiains’

-~ 1 - -
ko = [VKS 1)+ A0 j. T,d 31] Vs OTN ! (386)

8812

“for the equation

\A [keff.lv(‘(si‘)’in + (%) Slz({T}z it {T} =0 (387)

where k., does not even depend explicitly on the phase heat conductivity
coefficient k, (if the latter is taken as a constant value). Generally speaking,
it depends on k, implicitly through the boundary conditions and the
conditions at the interface surface 85, ,.

Of course, the situation changes if the heat exchange term (last term in
(385)) is taken into account as the input correlation factor for conventional
bulk efflective heat conductivity coefficient k. 1 in the equation

V- [y V(s DT = 0. (388)

The main reason why in the present problem treatment the interphase
heat e?(change term is separated from the other two terms in the rhus. of Eq.
(385) is that this logistics gives clarity in analysis and modeling of interface
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transport processes, which is not present in conventional composite medinm
maodeling.

Also, in the more complete and challenging physics of interface transport
modeling as in the third phase, this third interphase exchange term, along
with the second term, is an issue tightly conneeted to the closure problem
and to the models of interface surface transport.

b. Nonlinear Heat Conductivity of a Pore Phase Material Meanwhile, for
materials such as high-temperature superconductors (ITSC}, a constant
heat conductivity coefficient is not a justifiable choice, as the usual analysis
of approaches has shown above. That means complications in treating the
equation with a nonlinear heat conductivity coefficient in phase 1,

Gsotpens AT 2 9L 1V DTN + VLG R VT

(K, - 1 oT, <
ARSI L h, g
+V 20 s, Tids, + 18 o K, 2%, ds; + {500{81, Ho

(389)

where the effective conductivity model has two additional terms, one of
which reflects the mean surface temperature over the interface surface inside
of the REV, and the other of which results from nonlinearity of the fields
inside subvolume AQ, '

Ko = [{Kl}lwsofm + UK VT

+{"I§"QIJAJ-S T1351](‘7(<51>T1))"‘,' (390)

@
which when inserted in the heat transport equation gives
aT, = .
<51>(P‘3p)1 B =V [Keff.lv(<sl>T1)] + 831 812 ({T}z
- {T}l) + <51>{Sr,}1- (391)

Meanwhile, when an experimentalist evalvates his or her experimental
data using the equation
aT,

[k, VT (393)

(Pcph Bt

with the calculation shown eatlier of the thermal conductivity coefficient
using experimenial data, he or she makes two mistakes:
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1. He is conlusing the material’s clear homogeneous conductivity coeffi-
ient k; (which is the subject of his experiment) with the effective coeflicient
Corr,1 Of the same phase in a composite---which is just another variable. -

2. Doing data reduction as [or the modeling eguation

T, ~
(pcp)l B—II =V- [kexp.l VTI] (392)
neaning that
Fory = Ky, (394)

ind seriously believing that he measures the real homogeneous k, he seeks,
e drops out (buf in reality he takes implicitly into account} the term
eflecting the exchange rate,

&21312({T}2 - {T}I)! (395)

n the composite materal, which is experiencing at least two (emperaturcs
and usually a great influence of the internal exchange rate (see woik by
ravkin and Kushch {33, 341 and Travkin et al. [21]). In this way, an
sxperimentalist makes a second mistake due to miscalculation of the
nfluence of this additional term-—yet the conductivity coefficient
texpa€valuated from experiment is not the value it is considered to be—
Ceeps F Kyl ‘

When the experimentalist’s goal is the measurement, not of a bulk
clfective coefficient of a material, but of the pure material’s conductivity
coefficient, considerations regarding the issues of homogeneity and experi-
mental data modeling are of primary interest.

The standard definition of the effective (macroscopic) conductivily tensor
5 determined from

Y = VT, (396)
in which it is assumed that
G2 =KD+ 02 = kYT, — VT, = —kf{VT) = kYT
= —kE[(YTY, + (VD] = —kECVT Y — kECVTY,, (397)

50, for the wsnally assumed interface 85, physics, the effective coefficient is
letermined to be

kzi <VT> = [k1<VT>1 + kz‘(VT}z}

=k V(Cm ST + V() T + (ky — k) <

T.ds, (398
AQ 512 lds.l ( )

L
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or

o~ — i -
k= [:kLVKml)Tl) + V(im0 ) + (ky — k) A J:as T1d31:l <VT>_1,

(399)
ar
o~ ~ 1 —
[klw<m1>m +VEm,DT) + (ky — k) o5 L Tzdsz]
]\1* = = IF12 ,
’ [VIDy + {VT,] '
(400)

which involves knowledge of three different functions, T}, T, Tiys,,» in the
volume Q. This formuta for the steady-state eflective conductivity can be
shown to be equal to the known expression

KSCVT) = VT + (ky — k) Z\Jﬁ j VTdo

ALYy
=k, V(I + (ky — K, XKVTD,. (401)

It is worth noting here that the ¥nown formulae for the effective heat
conductivity (or dielectric permittivity) of the layered medium

k¥= % (mDk, i=1,2 (402)
i=1

for a field applied parallel to the interface of layers, and

k&= [Z %]_1 (403)

i=1 i

when the heat flux is perpendicular io the interface, are easily derived from
the general expresston (399) using assumptions that infraphase fields are
equal, T, = T,, that interface boundary conditions are valid for averaged
fields, and that adjoining surface interface temperatures are close in magni- -
tude. The same assumptions are eflectnal when conventional volume aver-
aging techniques are applied toward the derivation of formulae (402) and
(403).

5. Bulk Heat Conductivity Coefficients of a Composite Material

The problem becomes no easier in the case when the effective conductivity
coefficient is meant to serve for the whole composite material. Combining
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both temperature equations (if only two phases are present) for the simplest
case of constant coefficients,

P

daT, = i - k, o
{sploe,)y Ttl =k, V3 (s 0Ty + k1V'I:K'ﬁ ,Lsu Fl‘“lil"'m J-BSu VT, -ds,

aT; ~ 1 - k -
{splpey), E?‘ =k, V(5,0 )+ K,V I:Kﬁ lez Tzdszil""h_;"-i J;Su VT, ds,,

into one equation by adding one to another, we obtain

e TE o+ (splpe,)s 2 = V-, Vs OT) + V(G T

keeping in mind that the two-phase averaged temperature is
, (T = (0T, + <50 T, (405)
One can write down the mixture temperature equation when summation
of the equations gives (when taking into account the boundary condition of
temperature fluxes equality at the interface surface, (k;VT) = (k,VT,))
’ aT, aT;
<31>(Pcp)1 —5_121 + <SZ>(pcp)2 —BTZ

C V- VG T) + k¥ DT + (k, — kz)v-(-i f T]Esl}

AQ
(406)
or, wrtten in terms of thermal diffusivities a, and a,,
KT ~ ~ 1 -
B2 VL Vs> T) + V()T + (g —a¥-| - [ 1,
ot AQ a5,

. k 1 - k.
220 . P =12 4
”l( a kz) [AQLSH Vi, ‘”1]’ “ ey (ThE WD

which has the three different temperatures — 7, T;, and T,(25;,) (here
(T =Ty + 3,0T).
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And, assuming only a local thermal equilibrium,
(D =GpTi+ )T, =T*=T, =17, (408)

the mixed temperature equation becomes two-temperature T, T35 ,3)
dependable with simplified left hand part of the equation
T*

(G202, + <)pe)) o = V[0, V(G T*) - V(s> )]

1 -
+(k, kz)V-[m LS Tldsl]. (409)

With the two different temperatures, the effective coefficient of conductiv-
ity is equal to

iy = {w‘ TLEDTH + k() TH)]

+ (kg — ) [315 f i né’sl]} (VT*) L (@410)

This formula coincides with the effective coefficient of conductivity for the
steady-state effective conductivity in the medium and can be shown to be
equal to the known expression

2 VT = I, VT + (ky — k) L f VT do. (411)
AQ Jao,

Trom this formula an important conclusion can be draws: that the most
saught-after characteristics in heterogeneons media transport, which are the
effective transport coefficients, can be eorrectly determined using the con-
ventional definition for the effective conductivity—for example, for the
steady-state problem

i

*<]> = szfV<T> = k?.V(T) + (kl - kz) m

f VIdm, (412)
ALYy

but only in a fraction of problems, while employing the DMM-DNM exact
solution. The issue is that in a majority of problems, such as for in-
homogeneous, nonlinear coefficients and in many transient problems, hav-
ing the two-field DMM-DNM exact solution is not enough to find effective
coefficients. As shown earlier, only the requirement of thermal equilibrium

warrants the equality of steady-state and transient effective conductivities in
a two-phase medium.
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The second form of the same equation with the surface integral of the
fluctvation temperature in phase 1 is

Tk

aT ]
({sy2lpe)y + {salpe,)a) - = VoL (s o+ ka (s W(T )]

1 P
+ (kg -~ k)Y - [AQ Lsn Tldsl}, (413)

still having the phase 1 temperature fluctuation variable in one of the terms.
The following equality arises while comparing the two last equations {(409)
and {(413);

(T )T 4 VYT + Gy ) | 5 [ i |

= [tk ({813 + ka{s22)V(TH)] + (kg — k) [AQ LS 'Tlds.l]- (414)

As cam be seen, the transient effective diffusivity coefficent aZyy in the VAT
nonequilibrivm two-temperature equation (407) can be derived through the
equality

a3 (VTS = 8, V(G5 ) T) + 1, ¥(¢s) ) + (a, — ) [AQ f Tﬁsl]

kA 1 S
vl {al(‘—ﬁk—l)[m LS V:r,-dslﬂ (415)
12 . .

or

T = a0 T + DT + 0 =) 5 [ 7idss |40

(416)

where V(™% is the inverse operator —V - (VI Y(f)) = f such that if

a, k 1 -
VA= i N | N .
a, ( a, kz)[A.Q J:m; VT, dsl}, {(417)

then

k 1 -
A=y 0 0 | B i :
RO Pl I

VOLUBME AVERAGING THEORY 107

From the preceding expression, the transient effective nonequilibrium
coefficient in a two-phase medium can be delermined as :

korr = agir({s Do}y + (522(pey)a), 419

which looks rather inconvenient for analytical or experimental assessment
or numerical caleulation. The solution of this problem, which includes as an
imperative part the finding of the effective bulk composite material heat
conductivity (diffusivily), coefficient, is equal to the solution of the exact
two-phase problem. We see that the two-temperature DMM-DNM is not
enough for the convenient construction of the eflective coefficient of conduc-
tivity. As we can compare the expressions for transient coefficient (419) and
thermal equilibrium coefficient (410} they are of great difference in definition
and in calculation. And it does not matter which kind of mathematical
statement is used lor the problem — the two separate heat transfer equations
or the VAT statement— the problem complexity is the same. Only by using
the VAT equations is the correct estimation ol the transient effective
ceefficients on the upper scale available.

If we adopt the idea that phase temperafure variables in each of the
subvolumes AQ, and A}, can be presented as sums of the overall tempera-
ture and local Auctnations {Nozad et al. [40]),

L=<+ T, L=<+ 1, (420)

which means an introduction of the two new variables ']v‘ and ']'"2, then the
equation for the composite averaged lemperature follows (Nozad et al. [407)
in the farm

0 1 -
({slpe)s + <slpe)) 21 = -{<s1>k1 [V<T>+ i T;dsi]
2512

]
3512

¥ ¥

aT;
- {(31 Jpe,h % + {5, 2(pcp)s 6—;

+ {820k, [

— V‘(<S1>klvﬁ + <52>kzvriz}}

(421)

which has five variable temperatures. If the assumptions and constraints
given in Nozad et al. [40] are all satisfied, then the final eqnation with only
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three different temperatures resumes;

5()

i -
(<31>(ﬂc h + splpey)s) —— '{(Sl>k1 [V<T> *t A, AQy os Tid%]

1 P
T,d .
Aﬂz 851z * 52}}

{422)

+ {520k, [

This means that the neglect of the global deviation f’l, TZ terms still does
not remove the requirement of a two-temperature solution.

a. Effective Conductivity Coefficients in a Porons Medium When I'hase One
Is a Flnid Yn phase 1 the VAT eqnation is written [or the laminar regime.
In the work by Kuwahara and Nakayama [199] is given the DM M-DINM
solution of the 2D problem of uniformly located quadratic rods with equal
spacing in both directions. Studies were undertaken of both the For-
chheimer and post-Forchheimer flow regimes.

This work is a good example of how DMM-DNM goals cannot be
accomplished, even if the solution on the microlevel is obtained completely,
if the proper VAT scaling procedures basics are not applied.

The one structural unit— periodic cell in the medium—was taken for
DMM-DNM.

Equations were taken with constant coefficients, and in phase 1 the VAT
equation was written for the laminar regime as

{my(pe }f f + mpe ) UV, = (pe, ), V-~ T Dy + k, VY () Ty)

1 - k -
¢ i -d 5. 2
-H’cV[AQj T}ds]+AQJ VT, -ds (423)

Adding this equation to the VAT solid-phase (second phase) two-
temperature equation gives

aT aT; .
(m(pc,), man 4+ {50008 ,), ~372 + {mX{pe,) ;U VT,

= {pe, ) V- {=T;t>; + V- (ka((mYT;} + ky V({520 1)

- kf _
- V |:E Lsxz g T 20 AQ J;Su Ed52:|

k, k, =
+-L VT, ds VT, ds,, (424)
AQ 2312 1 AQ .[33[3 2 *
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which reduces because of interface flux equality to

{my{pc, )f ar + {s:2{pe,,

Yo =2 (mpe BIASS
= V- (k VDT, + VG0 T + (pe,) V- —Trt >,
4k, — ky)V- [ AIQ L T,E{sl], (425)

which has two averaged temperatures 7} and ‘7"2, interface surface integrated
temperatore T,(35,,), and two fields of fluctnations T ) and uf(x)
assuming that the velocity field is also computed and known

We now write the effective conductivity coelficients for (425) and for the
one-temperature equation when temperature equilibrivm is assumed.

In the first case, for the weighted temperature,

LTy = KmY(pe ) T; + (s3)(pe,) To)fwe (426)
wr = <{m)(pc,); + {s535(pc, ), = const, (427)
the equation can be written as

T
ot

'MJ

+ (md(pc,), U VT,
= V- (k V(O TY) + K Vs, 0 T) + (pe,) V- (=Tt

- 2

where three temperatures are unknown, (T’“’) T and T , plus the interface
surface temperature integral T,{05,,) and ﬂuc’tuatlon ﬁelds T (%) and #i;(x).
The effective coefficient of conductivity can be looked for is

kg KVT*y = (ke VLmdTy) + 1V od T + (pe,) Ty,

1 =
+(ky— k) [Iﬁ f T}dsl]. (429)
3512

In order to avoid the complicated problems with effective conducnwty
coefficient definition in a multitemperature environment, Kuwzahara and
Kakayama [199], while performing DMM-DNM for the problem of

laminar regime transport in a porous medinm, decided to Justify the local
thermal equilibrinm condiiion

() =mT+ ()T =T*=T,=T,

which greatly changes (he one effective temperature equation. This equation
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becomes simpler with only one unknown temperature T* and variable field
T; and is written as

oT* ~
(Omylpe, ), + (sdlpe )a) 5+ <mdtoe,) 0,V

= V(e VmYT*) + by V(5,0 T#) + (pe,) V< —T;i0),

1 -
RV [-A_(_l ,Ls T}dﬂ], @0

as the variable temperature and velocity fluctuation fields 'f} and #; shouid
be konown, although this is a problem. As long as the definition of the
effective conductivity cosfficient is

ity CVT*y = b, V(Cm T*) + ko V(<s,5T*) + (pe, ) <~ Trtd

1 -
Tk, —ky) |- T.ds ] (431)
( I 2) [AQ J.aSlz I 1

then the effective conductivity can be calculated subject to known T%, T,
T,, and {1;. At the same time, the important issue Is that in DMM-DNM the
assumption of thermal equilibrium has no sense at all—as long as the
problem have been already calculated as the two-temperature problem.

To further perform the correct estimation or calculation of effective
characteristies, one needs to know what are those characteristics in terms of
definition and mathematical description or model?

This is the one more place where the DMM-DNM as it is performed now
is in trouble if it does not comply with the same hierarchical theory
derivations and conclusions as the VAT (see also the studies by Travkin et
al. [115] and Travkin and Catton [114, 21]).

As shown earlier, only the requirement of thermal equilibnium warrants
the equality of steady-state and transient effective conductivities in a
two-phase medinm.

Consequently, if taken correctly, the two-temperature model will intro-
duce more trouble in treatment and even interpretation of the needed bulk,
averaged temperature (as fong as this problem is already known to exist and
is treated in nonlinear and temperature-dependent situations) and the
corresponding effective conductivity coefficient (or coefficients),

1. Thus, comparing the two effective conductivity coefficients (429) and
(431), one can assess the difference in the second term form and
consequently, the value of computed coefficients. _

Comparing the expressions for one equilibrivm temperatuce and one
effective weighted temperature, as well as for their effective conductiv-
ity coefficients, one can also observe the great imbalance and inequal-
ity in their definitions and computations.
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2. Summarizing application of DMM-DNM approach by Kuwahara and
Nakayama [1997, it can be said that it is questionable procedure to
make an assumption of equilibrium temperatures when the problem
was stated and computed as via DINM [or two temperatures.

3. In the calculation of the effective coefficients of conductivity —stag-
nant thermal conductivity k,; tortuosity molecular diffusion k,,; and
thermal dispersion ky,— Kuwahara and Nakayama [199] used a
quesiionable procedure for calculation of the two last coeflicients.

They used one-cell (REV) computation for surface and fluctuation tem-
peratures for periodical morphology of the medium, and at the same time
they used the infinite REV definition for the effective temperature gradient
for their calculation (assigned in the problem); see the expressions for
calculation of these coefficients, (21)—(24) on p. 413. That action means the
mixture of two different scale variables in one expression for effective
characteristics— which is incorrect by definition. If this is used consciously,
the fact should be stated on that matter explicitly, because it alters the
results.

X, VAT-Based Compact Heat Exchanger Design and Optimization

At the present time, compact heat exchanger (CHE) design is based
primarily on utilization of known standard heat exchanger caleulation
procedures (see, for example, Kays and London [172]). Typical analysis of
a heat exchanger design depends on the simple heat balance equations that
are widely used in the process equipment industry. Analytically based
models are composed for a properly constructed set of formulas for a given
spatial design of heat transfer ¢lements that allow, most of the existing heat
transfer mechanisms to be accounted for.

Analogies between heat transfer and [riction have been shown by Church-
ill [200] and by Churchill and Chan [201] to be inadequate for describing
many of the HE configurations of interest. This has been suspected for some
time and will seriously affect the use of the “j-factor” in HE modeling and
design.

Modeling of a specific heat exchanger geometry by Tsay and Weinbaum
[202] provides a useful preliminary step and a potential benchmark test
case. Thaugh the study only considered hydrodynamic effects and restricted
itself to consideration of regular media and the creeping flow regime, the
effects of morphology-charactenistic varation upon momentum {ransport
phenomena were explored. The authors show that the overall bed drag
coefficient in the creep flow regime increases dramatically as the inper-
cylinder spacing approaches the order of the channel half-height.
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Analysis of processes in regnlar and randomly organized heferogeneous
media and CHE can be performed in different ways. Some CHE structures
have the characteristics of a porous medium and can be studied by
application of the developments of porous media modeling. In this work, a
theoretical basis for employing heat and momentum transport equations
obtained from volume averaging theory (VAT) is developed for modeling
and design of heat exchangers. Using different flow regime transport models,
equation sets are obtained for momentum transport and two- and three-
temperature transfer in nonisotropic heteropeneous CHE media with ac-
counting for interphase exchange and microroughness.

The development of new optimization problems based on the VAT-
formulated CHE models using a dual optimization approach is suggested.
Dual optimization is the optimization of the morphological parameters
(size, morphology of working spaces) and the thermophysical properties
(characteristics) of the working solid and liquid materials to maximize heat
transfer while minimizing pressure loss. This allows heat exchanger
modeling and possible optimization to be based on theoretically correct field
equations rather than the usual balance equations. The problems of shape
optimization traditionally have been addressed in HE design on the basis of
general statements that inchude beal and momentum equations along with
their boundary conditions stated on the assigned known volumes and
surfaces; see, for example, Bejan and Morega [203].

A A Sport Review oF CURRENT PRACTICE
™ HEAT EXCHANGER MODELING

" Analysis of heat exchanger designs, as described by Bulterworth [204],
depends ou the heat balance equations that are widely nsed in the heat
design industry. The general form of the thermal design equation for heat
exchangers (see, for example, Figs. 7-9) can be written (Butterworth [2047)

a0 = adAAT,

where Q is the heat rate, and A4 is the transfer surface area. As outlined by
Martin [205], the coupled differential equations for a cross flow tube heal
exchanger (Fig. 7) modeling are (for simplicity only one row is considered)

de,

________=® — @au
dt, v
e,

——Z =0, —@,,
dcz 1 2

where @,, ©,, and @ are dimensionless first and second fluid temperatures
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Mixing elemg_]

Flow of cnl(f
fluid

1 Flow of hot fluid

Fig. 7. Three-phase lube heat exchanger unconsolidated morphology.

and the second temperature being averaged over the tube’s row widih. As
follows from these equations, all information about a given heat exchanger’s
peculiarities and design specifics is included in the dimensionless coordinates

ad z.
g = _!: i= 1: 25
t (M("p)i [‘i

where o is the overall heat transfer coeflicient and M is the mass Jow raie.

Second-order ordinary differential equations are developed for HE as well
(sce, for example, Paffenbarger [206]).
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6. 8. CITE morphology with separated subchanuels for each of the uids.



1i4 Y. S. TRAVEIN AND [ CATTON

Hot Fluid

=

Coolant

Fiz. 9. Compact heat exchanger {CHE) with contracied-tube layer morphology for one of
the fluids

Webb in a book [207], and in his invited talk at the 10th International
Heat Transfer Conference [208], distinguishes four basic approaches to
predicting the heat transfer jfactor and the Fanning friction factor f for
heat exchanger design. They are (1) power-law correlations; (2) asymptotic
correlations; (3) analytically based models; and (4) numerical solutions.

Analytically based models are properly constructed set of formulas for a
given spatial construction of heat transfer elements that allows most of the
existing heat transfer mechanisms to be accounted for. Many examples are
given in publications by Webb [207, 208], Bergles [209], and olher
researchers.

The major differences between the measured characteristics of air-cooled
fieat exchangers with aluminum or copper finned tubes with large height,
smalf thickness, and narrow-pitch fins, and high-temperature waste heat
recovery exchangers with steel finned tubes with rather low height and
thickness and wide-pitched fins, are given in a paper by Fukagawa et al
[210] Despite the fact that morphology of the heat exchange medium is
essentially the same, the correlations predicting heat transfer and pressure
drop values do not work for both HE types altogether. For this particolar
heat exchange morphology, a wide-ranging experiment program is needed

for different ratios of the morphology parameters. There is, at present, no.

general approach for describing the dependencies of heat transfer cffective-
ness or frictional losses for a reasonably wide range of morphoelogical
properties and their ratios. :

The field of compact heat exchangers has received special attention during
the past several years. A wide variety of plate fin heat exchangers (PFIIE)
has been developed for applications in heat recovery systems, seawater
evaporators, condensers {or heat pumps, etc. It is propased that a theoretical
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Fic. 10. Initial optimization scheme for benchmark tube heat exchanger morphology.

basis for employing heat and momentum transport equations obtained with
volume averaging theory be developed for the design of heat exchangers.
An assumption of the equilibrium streams is commeon in HE design (see,
for example, Butterworth [204]). Almost all commercial design software
assume plug flow with occasional simple corrections to reflect deviations
from the plug flow. CFD has applications in simplified situations, when the
geometry of the channels or heat transfer surfaces can be described fairly:
Butterworth [204] further noted that “the space outside tubes in heat
exchangers presents an enormously complicated geometry” and “modeling

" these exchangers fully, even with simplified turbulence models just men-

tioned is still impracticable.” We do not agree with this view and propose
to use techniques developed as part of our work to show that practical
modeling methods exist.

During the past [ew years considerable attention has been given to the
problem of active control of fluid fows. This interest is motivated by a
number of potential applications in areas such as control of filow separation,
combustion, fluid—structure interaction, and supermaneuverable aircraft. In
this direction, Burns et al. [211, 2127 developed several computational
algorithms for active control design for the Burgers equation, a simple mode]
for convection—diffusion phenomena such as shock waves and traffic flows.

Generally, the optimal control problems with partial differential equa-
tions (PDE), to which VAT-based HE models convert, can have detailed





