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A model of turbulent flow and two-temperature heat transfer in a highly
porous medium was evaluated numerically for a layer of regular packed
particles (Travkin and Catton [16, 20}; Gratton et al. [26, 27]) with heat
exchange from the side surfaces. Nonlinear two-temperature heat and
momentum turbulent transport equations were developed on the basis of
VAT, requiring the evaluation of transport coefficient models. This ap-
proach required that the coefficients in the equations, as well as the form of
the equations themselves, be consistent to accurately model the processes
and morphology of the porous medium. The integral terms in the equations
were dropped or transformed in a rigorous fashion consistent with physical
arguments regarding the porous medium structure, flow and heat transfer
regimes (Travkin and Catton [20]; Travkin et al. [17]). The form of the
Darcy term as well as the quadeatic term was shown to depend directly on
the assumed version of the convective and diffusion terms. More impor-
tantly, both diffusion (Brinkman) and drag resistance terms in the final
forms of the flow equations were proven to be directly connected. These
relations follow naturally from the closure process. The resulting necessity
for transport coefficient models for forced, single phase fluid convection led
to their development for nonuniformly and randomly structured highly
porous media,

A regular morphology structure was used to determine the characteristic
morphology functions, (porosity {m}, and specific surface §,) that were
used in the équations in the form of analytically calculable functions. A first
approximation for the coefficients, for example, drag resistance or heat
transfer, was abtained from experimentally determined coefficient correla-
tions. Existing models for variable morphology functions such as porosity
and specific surface were used by Travkin and Cation [20] and Gratton et
al. [27] to obtain comparisons with other work in a relatively high Reynolds
number range.

All the coefficient models they used were stricily connected to assumed
(or admitted) porous medium morphology models, meaning that the coelfi-
cient values are determined in 2 manner consistent with the selecled
geometry. Comparison of modeling results was sometimes difficult because
other models utilized mathematical treatments or models that do not allow
a complete description of the medium morphology; see Travkin and Cation
{16]. Closures were developed for capillary and globular medium morphol-
ogy models (Travkin and Catton [16, 17, 207; Gratton et al. [26, 27]). It was
shown that the approach taken to close the integral resistance terms in the
momentom eguation for a regular siructure allows the second-order termns
for the laminar and turbulent regimes to naturally occur. These terms were
taken to be analogous to the Darcy or Forchheimer terms for different flow
velocities. Numerical evaluations of the models show distinet differences in
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the overall drag coefficent among tﬁe straight capillary and globular models
for both the regular and simple cubic morphologies.

IV. Microscale Heat Transport Description Problems and VAT Appreach

Study of energy Lransport at different scales in a heterogeneous media or
system emphasizes the importance of transport phenomena at subcrystalline
and atomic scales. Among many works addressing subcrystalline transport
phenomena (see Fushinobu et al. [217]; Caceres and Wio [92]; Tzou et al.
[93]; Majumdar [94]; Peterson [95], etc.), the governing energy transport
equations, whether they are of diflerential type or integrodilferential, are for
homogeneous or homogenized matter. This idealization significantly reduc-
es the value of the physical description that results. VAT shows great
promise as a tool for development of models for this type of phenomena
because it becomes possible to include the inherent nonlinearity and
heterogeneity found at the subcrystalline level and reflect the impact at the
upper levels or scales.

A heuristic approach suggested by Tzou [96] lnmps all the atomic and
subcrystalline scale phenomena “into the delayed response in time in the
macroscopic formulation.” This approach was proposed by author to close
the existing gap in knowledge and to help engineers develop applications.
Unfortunately, the coupling between the characteristics of the subscale
phenomena and delayed response time is lost. There is an ongoing search
for the transport equations describing many-body systems that exhibit
highly nonequilibrium behavior, including non-Markovian diffusion. The
more exact the description of a physical phenomenon provided by a
mathematical model, the more possibilities there are for innovative improve-
ments in the function of a particular mateniat or device. Our contribution to
the effort is an extensive analysis of existing approaches to the development
of theories for the suberystalline and atomic seale levels. We have also made
progress in the development of VAT-based tools applicable at the atomic
and nanoscale level for description of transport of heat, mass, and charge in
SiC and superconductive ceramics.

At the subcrystalline scale, we will consider energy transport using a VAT
description for effects of crystal defects and impurities on phonon-phonon
scattering, which has a substantial impact on thermal conductivity. At the
crystal scale, the importance of thermal resistance (different models) due to
various mechanisms— lattice unharmonic resistance and erystal boundary
defects —will be treated, Including these phenomena shows that they have
a major impact on the transport characteristics in critical applications such
as optical ceramics and superconductive ceramics.
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A. TRADTIONAL DescrIpTIONS OF MICROSCALE HEAT TRANSPORT

Kaganov et al. [97] first developed a theory to describe energy exchange
between electrons and the lattice of a solid for arbitrary temperatures using
earlier. advances in this field by Ginzburg and Shabanskii [98] and by
Akhiezer and Pomeranchuk {99]. In their work, they assumed that the
electron gas was in an equilibrium state. After a briel summary of this early
work, an analysis leading to a method for estimating the relaxation
processes between the electron fluid temperature T, and the phonon tem-
perature T, will be presenied.

The heat balance equation for the électron temperature is

bl _
e (T) ;t; =-U+0, (97)

where Q is the heat source, ¢,{T) is the electronic specific heat,
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U is the heat exchange term,
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where m* is the effective electronic mass, c, is the sound velocity, n, is the
number of electrons per unit volume, z(T}) is the time to traverse a mean
free path of electrons under the condition that the latfice temperature
coincides with the electron temperature and is equal respectively to 7.
When the lattice temperature is assumed to be much less than the
temperature of the electrons (an assumption later found to be weak), then
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Kaganov et al. [97] nsed an equation for elastic lattice vibration of the form

U,
or?

= 2AU, — (g) Vi(r — Vo). (101)

This also allowed them to develop the heat exchange term (here U, 1s the
displacement vector). In this equation, p = M/d? is the density of lattice, M
is the mass of the lattice atom, I is the lattice volume, and U is the
interaction constant of the electron with the lattice that appears in the
cxpression for the time to travel the mean free path.

1t was nearly 20 years before needs in different physical fields (namely,
intense short-timespan energy heating in laser applications) brought atten-
tion to this phenomenon and to use it for further technological advances.
Anisimov et al. [100, 101] introduced a simplified two-fluid temperature
model for heat transport in solids,

o,
Bt = XA'I:: — a:p(Te - I-I') + f(r:l [) (102)

n* m*cin,
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Further development of the idea of a two-field two-temperature model for
energy transport in metals by Qiu and Tien [102-1047 used this model
They modified the energy exchange rate coefficent (heat transfer) model in
a way that uses the coefficient of conductivity K, in the following formula
instead of time between collisions T(T.):

4 2 :
ﬁ:G:ﬂ%ﬁs_@__ (104)

e

Tzou et al. [93] used the two-fluid model with two eguations for the
electron—phonon transpart in metals based on previous works by Anisimov
et al. [101], Fujimoto et al. [105], Elsayed-Ali [106], and others. The
equation for diffusion in an electron pas is a parabolic heat conduction
equation with an exchange term

T,
Cog, =VEVL) = Gp(T. — Th), (105}

with phonon transport (phonon—electron interactions) for the metal lattice

(just simplified equation) being described by

C, aaT G (T, —T), (106)
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where K_ is the thermal conductivity of the electron gas. Using the
Wiedermann—Franz law for the eleciron—phonon interaction, Qiu and Tien
[102, 103] show that the coupling factor G,, can be approximated by -

o 1'54(" ecskB)z

G,, X s {ron
where c,, the speed of sound in solid, is
= % (6n7n) T, (108)

T, is the Debye temperature, ki is Planck’s constant, and n, and n, are the
electronic and atomic volumetric number densities. Assuming constant
thermal properties, the two equations can be combined, yielding a one-
temperature equation

P?T o, 0T, 1381, 1 8T
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(109)

where the thermal diffusivity of electron gas w,, equivalent thermal diffusiv-
ity oy, and thermal wave speed C; are defined by
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Tzou [96] later proposed a unified two-fluid mode! to derive the general
hyperbolic equation with two relaxation times 7, and 7,
' 19T | 1, 8T
x 8t o 9t

0
V2T + 11 % (V7)) = (11y
which he argues is the same equation derived from two-step models in
metals. A more complex two-temperatures model was obtained by Gladkov
[107] using parabolic equations _
o, T T

GtV =g — i =T (112)

and’

aT; 82T, ,
?;" =1, Fj 4 oty (T, — T, (113)

It can be seen from his work that the coefficients of heat transfer ;, and
oy, are not equal. After combining the two equations into one, an equation
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for a mobile (liquid) medium results:

AT R e BN
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"There are other works (see, for example, Joseph and Preziosi {1087]) treating

the two-fluid heat transport and obtaining the same kind of hyperbolic
equation.

(114)

1. Equation of Phonon Radiative Transfer

Majumdar [94] suggested an equation for phonon radiative transfer
(EPRT). In three dimensions the equation is
L _IT®) — 1,

‘“cia?m‘ + (Vph-VIw) = W, (115)

where T, is the directional-spectral phonon intensity, ¥, is the phonon
propagation speed, and I2(T{x)) is the equilibrium intensity corresponding
to a blackbody intensity at temperatures below the Debye temperature. To
make matters more complex, it should be noted that as stressed by Peterson
[95], “However, fundamental differences exist between phonon and photon
behavior in the regime where scattering and collisional processes are
important... . Bven in perfect crystals, the so-cafled unklapp processes that
are responsible for finite thermal conductivity do not obey momentum
conservation.” )

2. Hyperbolic Heat Conduction Equations

The work by Vernotte, Cattaneo, Morse, and Feshbach that led to the
hyperbolic heat conduction equation was primarily heuristic in nature
{without a first principle physical basis). The final form is often presented as
a telegraph equation (see Joseph and Preziosi [108]),

T 19T k

———=—V2 11
FEMR T (w)vﬂ (116)
or
FT 8T 1 _
T -é?i— + a? -—; V(KVT), (1 17)

for nonconstant thermal conductivity K; » here is the heat capacity.
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Majumdar et al. [109] produced microphatographs of thermial images
that show the grain structure, visible in the topographical image, and notes
that “the grain boundaries appear hotter than within the grain. It is at
present not clear why this occurs... . The hot electrons collide with the
laitice and transfer energy by the emission of phonons”™ The governing
equations for a nonmagnetic medivm they use are conservation of electrons,

o V) =0; (118)
at
conservation of electron momentum,
av, e kg Y
= - = ——F — B — (=21} il
e F VoY, = — o B V) (Tm), (119)

where the last term “is the collision and scattering term analogous to the
Darcy term in porous media flow”, conservation of electron energy,

W,
B_te +V(WV,)= —enV, E)—k;V-(nV,T)

MQJ_&_T_)) - (120)

+ V- (kVT) ——( .

conservation of lattice optical phonon energy,

T — —
Cn a_g — (Wz (3/2)k8 T:]) _ (Co (Tn j:;l)); (121)
6t TE*O ‘rﬂ —a
and conservation of acoustical energy,
arT, - T
C, “B}E =V-kVT) + (C,I E—g;—i)) (122)

The last four equations have terms, the last term on the right-hand side, that
gualitatively reflect the collision and scattering rates in each process. Here
1, is the electron momentum relaxation time, 7,_, is the electron optical
relaxation time, 1,_, is the optical acoustical relaxation time, and kj is
Boltzmann’s constant. In those equations assumed a scalar effective mass for
the electrons m*.

The electric field is determined using the Gauss law equation written in
terms of electric potential (E = —V), -

V- (V) = —e(N, — N, —n+p) = —eN, (123)
Ny=(N,—~N,—n+p)
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where ¢ is the dielectric constant of Si, N, is the n-doping concentration, N,
is the p-doping concentration, and p is the hole number density.

B. VAT-BaseD Two-TEMPERATURE CONSERVATION EQUATIONS

Conservation equations derived using VAT enable one to capture all of
Lhe physics associated with transport of heat at the micro scale with more
rigor than any other method. VAT allows one to avoid the ad hoc
assumptions that are ofien required to close an equation set. The resulting
equations will have sufficient generality for one to begin to optimize material
design from the nanoscale npward, The theoretical development is briefly
outlined in what follows.

The nonlinear paraboic VAT-based heat conduction equation in one of
the phases of the superstructure (where superstructure is to be determined
as the micro- or nanoscale material’s organized morphology along with its
local characteristics) is

8{T, Z v
{siloe,), {5§}'5 = V- [ {K BT+ V [ {K VT
K.}, - i 8Ty -
+ VI:LEEEL J;S“ Tldsl] + 20 e, K, a—x:'dsl + (s >{Sr, }e-

(124

For constant thermal conductivity, the averaged equation for heat transfer
in the first phase can be writlen

aT, ~ 1 -
(s peph ﬂ—tl =k, V(5,0 T) + klv'[m' j 'Iidsl:l

812

+ Ky VT, ds; + 5,98 - (125)
ALY as,. !
These VAT equations (124) and (125), written for the two phases, will be
seen to yield the same pair of parabolic equations derived by researchers
such as Gladkov [107], but with quite different arguments. Closure to Eq.
(125) is needed for the second and third terms on the right-hand side. The
steps to closure are

1 aT - 1 aT
il koSl de = 2 AL
AQ LS,Z 13x, 1T T A LSH ky on, ds-m,

t L
= Gy ds; = “21312({T}2 - {T} o (126)
ALY s,
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with the heat transfer coefficient, @,(dS,,), defined in phase 2. This closure
procedure is approprate for description of fluid—solid medium heat ex-
change and might be considered as the analog to solid—solid heat exchange
found in many works. A more precise integration of the beat flux over the
interface surface, S5, yields exact closure for that term in goverting
equations for both neighboring phases.

Industry needs to lead ome to attempt 1o estimate, or simulate by
pumerical calculation or ofher methods, the effective transport properties of
heterogenous material. Among the many diverse methods used to do this,
VAT presents itself as an effective tool for evaluating and bringing together
different methods and is useful in providing a basis for comparative
validation of techniques. To demonstrate the value of a VAT-based process,
the efiective thermal conductivity will be determined within the VAT
framework. The averagd energy equation in phase 1 of 2 medium is

" 1 - -
k1V2(<31>T1) + klv'[ﬁ J Tldsl} =V T—4,]
812 .

The right-hand-side (“diffusive™like) flux is different from that convention-
ally found,

g - .k . _
q1= [k VI = K, V({30 T) — 2 Tidsy, e
AQ s,

where

~ k
keff.l = l:klv('(-gl)T;) + ﬁ J

a5y2

T}Esl] (VT . (128)

After these transformations, the heat transfer equation for phase 1 becomes

~

’ o, -
(51;‘(93,,]1 ‘a‘?l =V [kera VI]l+ &nsxz({T}z - {T}l) + (s, 2{57.}

(129)

This is the same type of heat transport equation routinely used in two-fiuid
models. The equation for heat transport in the second phase (il any) would
be the same, and one can easily obtain the hyperbolic type two-fluid
temperature model.

A similar VAT-based equation can be obtained for the heai transfer in
phase 1 when the heat conductivity coefficient is a function of the tempera-
ture or other scalar field (nonlinear) (Eq. (124)), but the effective conductiv-
ity will have an additional term reflecting the mean surface temperature over
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: - oo K - o
Koppa = [{K1}1V(<S1>71) + <31>{K1VT1}i + LA“F}I LS Tldsi](VTI) L

(130)
Equation (124) simplifies to

{solpehy %];l = V'[KHI,IVTL} + 85, 8({T}) — {1y + {3, 2{Sv. -
(131)

The third term on the right-hand side of (124) plays a different role when
the interface between two phases is only a mathematical surface without
thickness negleciing the transport within the surface means there is no need
to consider this medium separatety. When this is the case, this term can be
equal for the both phases, simplifying the closure problem. The problem
becomes significantly more complicated when transport within the interface
must be accounted for. ’

(. SIIRCRYSTALLINE SINGLE CrYSTAL DoMAN Wave HEAT
TRANSFORT BQUATIONS

Some features of energy transport, including electrodynamics, that are
above the scale of close capture quanium phenomena are considered next.
Limiting the scope of the problem allows us to concentrate on the descrip-
tion of heat transport phenomena in the medium above the quantum scale
where there are at least the three substantially different physical and spatial
scales to consider. Within this scope, the heat transport equation in a single
grain (crystalline) can be written in the form

2
BT, 0T,
. ot
Comparing this equation with the equation developed by Tzou [96] with
two relaxation times, 1, and 1,

PT 8T 3
+ T b = (VT) + oSy, (133)

[ 1
== V-(KVIT,) + = Sr,. (132)

Te gz Ty F)
and the parabolic equation obtained by Gladkov [107] for the model with
two temperatures for constant coefficients,

pm\Oh LBV PT @)V OT,
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oy, OX oy, 8% dx

=1 (134)
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one can see that all belong to the family of VAT two-temperature conduc-
tion problems with nonconstant effective coefficients for the charged carriers,

‘j“—- - .
T — v IKI T+ bl{Th — {T}) + S (39
and for phonon temperature transpoit,
O e ¥ IKVT] = BT, — T + 51, (136)

This pair of equations is the wave transport equations shown in previous
sections. )

Our current interest, however, is not to justify past assumptions made to
develop appropriate scale level encrgy transport equations, but to develop
mathematical models for heat transport and electrodynamics in muitiscale
microelectronics supersiruciures.

D. NonLOCAL EiECTRODYNAMICS AND HEAT TRANMSPORT IN
SUPERSTRUCTURES

Many microscale heterogeneous heat transport equations and some of the
solutions provided elsewhere (see, for example, [110, 111, 112, 113, 1091
required substantial analysis, and many need improvement. Goodson {1131,
for example, directly addresses the need to model nonhomogeneous medium
(diarmond CVD layer) thermal transport by accounting for the presence of
grains. The Peietls—Boltzmann equation for phonon transport was used
along with information on grain structure. In the present work, the goal is

. to give some imsight to situations (and those are substantial in number)
where the medium cannot be considered as homogeneous even at the
microscale level. For these circumstances, the governing field equations
should be based on conservation equations for a helerogeneous medium, for

- example, the VAT governing equations.

The VAT governing equations for heterostructuzres will be found starting
from a set of governing equations for a solid-state electron plasma fluid.

Phase averaging of the electron conservation equation (118) yields

<—2—';> £ (V-(V,)>, =0 (137)

where ¢ ), means averaging over the major phase of the material. The VAT
final form {or this equation is

a<">"'+v-<nv> + ! WV -ds =0 138)
3t .Bm AQ asm,“e § =1 (-
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~ ~ 1 .
B—OO—M + V-1, 00V, + (md{AV, 1t + nv, - ds, =0, (139)
at AQ 512

where 45, is the “interface™ (real or imaginary) of phases and scatterers.

It will be assumed that only immobile scatterers produce phase separ-
ation. This is not an essential restriction and is only taken to simpiify t}]e
appearance of the equations and streamline the development. We rccogr}lze
that defects and other scattering ohjects where processes are also oCCUIIngE,
such as nonmajor phases, occur, but we are not interested in them at this
time because their volumetric fractions are very small and their importance
is decreased by scattering of the fields in a major phase.

The electron fluid momentum transport equation can be wriiten in two
forms, and the form influences the final appearance of the VAT equations.
The first is

v, W= & cmy, (L >_L
< ot >m + <(Ve V)Ve>m - _;1: <1:>m Tﬂ-* <J"!. V(nTe) - ﬂTmu‘

(140)
Using the transformation
<~} V(nm> = <V'1; + 1T, % Vn> — (VT, + TV M,
= (VT + TYZ e Zy=1nn, LN

it can be written as

T,

m

VY
<‘3VE> VT3 = — 2 By~ 2y, TYE D —U—f“,
o S m m

(142)

where the brackets ] define the problem uncertainty in the treatment of
this telaxation term. Strictly speaking, this term should not be in this form
and may not exist.

The same equation written in conservative form is

v, e ky nv,
< Bt >m + <V'(nveve)>m= _-!’-r"l_* <nE>m —F (V(n'-re)>m _U z “:

n

(143)
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Using
UV IV D, = V-V V. ), — V.V -0V ) m
1 -
— V-V Vot 5g Ls,,_ (nV,V,)-ds,,

ALV (V) + V-V DD, (144)
Eq. (142) can be written in the VAT form as

KV, . g _1_ T
—ae + V- {nV, Vo, A i _Lsm (nv, V)-ds,

- {(&,,)Vs{v-(nve)}m -+ <ffe(v AR LD

e kg 1 -
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_ % {-(s,..ﬁ; (V{z.},,, . ALQM L zjs,,,) + <f;(\7(znnm>,,},

(145)

where the last term on the right-hand side of (142), the scattering and
collision reflection term, has been replaced by a number of terms, gach
reflecting interface-specific phenomena, including scatiering and collision.
Some manipulation of the convection terms of the conservative form of the
momentym equation has been done to combine the forms of the equations
*. of mass and momentum.

The second conservative form of the momentum equation is derived in

the form

v,
"ot

-« {1 - 1 -
-V [—=- . o — .
) (An j v, ds) .t j (nV,V)-ds,

- oy, - (V[(smﬁ‘; + <AL + 55 J N nnc'fs.,,),

RN RN AT SO AN RO AR

(146)

where a number of the integral terms are scattering and collision terms.
There are other possible forms of the left-hand side of the momentum
equation VAT equations that will not be pursued at this time.
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The homogeneous volume averaged electron gas energy equation for a
heterogeneous polycrystal becomes

<5W‘> V-V = — eV EDyy — kg (V- (VT

a
(We T (3/2)’(8'1:)]1’ (147’)
T

e—o

+ (VA VED m "-}J
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FIUA 1 -
elm yy- — W.V,)-d
AR UASSES T Ls,..,( V) ds,,

— —enV, B, — kgV (Y T — 2\% L (nV,T)-ds,

+V- [{ke}mv(<sm>{’r2}m)] + V- [(Sl:’{zevi}m]
- '.{kz}m r 1 _a_z T
v [_Aﬁ- Lsm T;dsm] " AQ .Ls.... ke 0x, 48 (148)

The integral terms again reflect scattering and collision that appear as a
result of the heterogeneous medium transport description. .
The equation for longitudinal phonon temperature is

TN _ (I | (Mo ‘
Coh -GG, o

at

TN kg .t .
O =2 = - T -d
< 2 > fa j (V. T) dsu+ 55 Lsm W,V.)-ds,

&} . 1 T, =
.l edm n o e,
v [AQ J.a ~ Tedsm:} A0 _LS,.., k, Tx ds,

{k,} ~ 1 IT, 7
_ v | Yein o P P B B 150
v [AQ o #mTRA [ A, (150)

The equation of acoustical phonon energy is

<%§> — (V- I +ucn uu asn

Ta“’a
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or

<c, a;;, > = V[, V(s (T3] + Vo[ )RV

(kY - 1 a1, -
== T - — k -ds .
v \: AQ Jas,., odsm |1 AL fas,.. * Ox; S

(152)

Describing phonon scattering and collision is an unsolved problem and as
noted by Peterson [95], “The complexity of this aspect of the problem
precludes the relatively simple solution used in simulating rarefied gas
flows.”

Another kind of single phase equation for momentum transport of
clectronic fluid results for magnetized materials:

av, _
<"5E_ >m + <(Ve V)Ve>m

e kg /1 v,
2Wﬁ{E+Vng>m—;1; <;V(HTE)>m——]l ]l (153)

T

The VAT form of this equation is

V. m o 1 -
Nelm . \Y — de
A RCOA RIS J (¥, V)2,

= {LsadVe{V AV N+ TV D,

S (B (VX BY,) (‘?'('ID,, s L j nzfs,,,)
m " AQ Josin

ky = 1 - . .
- {@mﬂ; (V{z,,},,, oo Lsm z,.dsm) + vz ’>,,.}.

m

(154)

The Maxwell equations for electromagnetic fields used to develop the *

VAT Maxwell equations for electromagnetic fields are

Vit B = e V() =0 (155)
B,
. d
VXHm:.lm-i_a(Dm}) (157)

L R o e A A et P
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({5 2ER) AG s 1130 )
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with constitutive relationships
B, =t H,, D,=tEn Ip=0nEn (158)

A full description of the derivation of the VAT nonlocal electrodynamics
governing equations is given by Travkin et al. {114, 115 with only a limited
number shown here.

For the electric field, the Maxwell equations, after averaging over phase
(m) using { >, become

- = 1
V- [$5m)EnEn] + V- [ {EnBrlud + 55 j

8811

(Eon) " dSw = P Von
{159)
Vx ({5, 0K, + L ds, xE, = a( H ) (160}
S m AQ e Sm m at Hy 1-
The phasc averaged magnetic field equations are
P -~ 1 e
V- (8, 0iTiE,) + V- s Hudnl + 35 (4,H,) ds, =0, (161)
88ms

and

" 10 .
- VX(<S“>H”)+A_§IJ ds xH,

DS
=% O + [(5u DB + 5> (BaBu}d (16D

These equations and some of their variations, such as the electric field
wave equaiions

g, 7°E,, p '
VB, = Unln =5, — Hufm 53 = \4 (;S) (163)
which becomes

Ik PEY, 1 3 1 -
= I — m .._'"_t —_— [ d
“mdm . at + n”mem atl + gm V(<Sm>pm) + EmAQ o pm Sm’

(164)

are the basis for modeling of electric and magnetic fields at the microscale
level in heterostruetures.
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The primary advantage of the VAT-based heterogenous media elec-
trodynamics equations is the inclusion of terms reffecting phenomena on the
interface surface 85, that can be used to precisely incorporate multiple
morphological effects cccuring at interfaces. '

E. PrOTONIC CRYSTALS BAND-GAP PrOBLEM:
ConvENTIONAL DMM-DNM ann VAT TREATMENT

One of the possible applications of VAT electrodynamices is the formula-
tion of models describing electromagnetic waves in a dielectric medium of
materials considered to be photonic crystals [118, 116, 117, 119, 126, 120].
The problem of photonic band-gap in composite materials has received
great attention since 31987 {118, 116] because of its exciting promises. The
most interesting applications appear in the purposeful design of materials
exhibiting selective, at least in some wave bands, propagation of eleciromag-
netic energy [1201.

Figotin and Kuchment [122] were the first who theoretically demon-
strated the existence of band-gaps in certain morphologics. Unfortunately,
this problem as presently formulated is based on the homogenesus Maxwell
equations. The most common way to treat such problems has been to seek
a solotion by doing numerical experiments over more or less the exact
morphology of interest, a method called detailed micromodeling (DIMM),
which is often done using direct numerical modeling (DNM) (for example,
see [1247). As a result, questions arise about differences between DMM-
DNM and heterogeneons media modeling (HMM), which is the modeling

. of an averaged medinm to determine its properties. How the averaging for
" HMM is accomplished is often not clear or not done at all.

So, why cannot DMM be sell-sufficient in the description of helerogen-
eous medium transport phenomena? The answers can be primarly under-
stood by analyzing, among others [237, the following issnes: '

1. A bagic principal mismatch occurs at the boundaries, causing bound-
ary condition problems. This means that for DMM and for the bulk
(averaged characteristics) material fields, the boundary conditions are prin-
cipally different.

2. The DMM solution must be matched to a corresponding HMM to
make it meaningful at the upper scales. This can only be done for regular
morphologies. Discrete continuum gap closure or mismatching will oceur
with DMM-DNM, precluding generalization to the next or higher levels in
the hierarchy.

3. The spatial scaling of heterogeneous problems with the chosen REV
(for DMM) is needed to address large or small deviations in elements
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considered that are governed by different underlying physics. When spatial
heterogeneities of the characteristics or morphology are evolving along the
coardinates, DMM cannot be used.

4. Numerical experiments provided by DMM-DNM need o be trans-
lated to a form that implies that the overall spatially averaged bulk
characteristics model random morphologies. It is not clear what kind of
equations are to be vsed as the governing equations, nor what variables
should be compared. In the casc of the local porosity theory [128, 129], for
example, the tesults of using real porous medium digitized images for
morphological analysis to calculate the effective dielectric constant assumes
that the HMM equations are applicable.

5, Imterpretation of the resulis of DMM-DNM is always a problem If
results are presented for a heterogeneous continuum, then the previous
point applies. If the results are being used as a solution for some discrete
problem, then the question is how to relate that solution to the contimuum
problem of interest or even to a slightly different problem. If the results
obtained are fit into a statistical model, then the phenomena are being
subjected to a statistical averaging procedure that is in most cases only
correct for independent events.

6. The most sought-after characteristics in heterogeneous media trans-
porl studies are the effective transport coefficients that can only be correctly
evaluated from

1
— {J> = o¥V{D) = g, V(D) + (0, — 73) 0 j‘m V& daw,

using the DMM-DNM exact solutions for a small fraction of the problems
of interest. The issue is that problems of interest having inhomogeneous,
nonlinear coefficients and, in many transient problems, two-field DMM-
DINM exact solutions are not enough to find the effective coefficients.

Fractal methods are sometimes used to describe multiscale phenomena.
The use of fractals is not relevant to most of the morphologies of interest
and the fractal phenomenon description is generally too morphological,
lacking many of the needed physical features. For example, descriptions of
both phases, of the phase interchange, etc., are need to represent the physical
pheniomenon.

For the simplest case of a superlattice or multilayer medium there can be
many difficulties. When the boundaries are not evenly located, crossing the
regular boundary cells of the medium, then the problem must be solved
again and again. If the coefficients are space dependent, because of the layers
or grain boundaries, they will influence scattering. Grain boundaries are not
perfect and are not just mathematical surfaces without thickness or physical
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properties. They cannot be treated as mathematical surfaces without any
properties. Imperfections in the internat spacial structures must be treated
as domain morphologies are not perfect at any spacial level. )

The insufficiency of a homogeneous wave propagation description of a
heterogeneous medium was addressed in [125] from a pure maihematical
point of view by searching for another type of governing operator that could
better explain the behavior of the frequency spectrum gigenmodes via
“heuristic arguments.” The general band-gap formulation should be treated
using the HMM statements developed from the analysis of the VAT
equations. A straightforward description of one of the band-gap problems
is given next.

Representing electromagnetic field components with time-harmonic com-
ponents,

E(x, y, )6, H(x, y, 26!, i=./(—1), (165)

The equations describing a dielectric medium becomes
V-eE) =0, VH=0, p=1 (166)
VxE= —inH, VxH =iwzE, (167)

where £ is the complex dielectric “constant™ defined by & = ¢ — i(o/w), and
g = 0(X), £ = &(X), & = &(X, w).
Taking the curl of the both sides of the vector equations,

Vx(%VxH) =V x{ioE), ¥x{VxE)=Vx(—ioH), ~(168)
" yields
1
V % (% Vxﬂ) = jo( —iwH) = w’Il (169)

Vx(VxE) = —in(ifok) = tw’E. (170)

This is the set of equations usually used when problems of photonic
band-gap materials are under investigation; see the study by Figotin and
Kuchment [123], p. 1564. These equations can be transformed to

—AE,{¥) = 0 5T)E,(X) (171
for E-polarized fields and
i
-V (:_g(—i-j VH3(E)) = 0’ H,(X) (172)

for H-polarized fields.

LT
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The further treatment by Figotin and Kuchment [123] reduces the
mathematics to two equations,

—V- (?jf") pr(ii)) = Af,(%) (173)
1 _ _
) Af(X) = Af,(X), (174)

where f, is the H; or E; polarization determined components of electric or
magnetic ficlds.

These equations state the eigenvalue problem characterizing the spectrum
of electromagnetic wave propagation in a dielectric two-phase medinm,
which is supposed to describe the pholonic materials band-gap problem of
EM propagation (see equations on p. 1568 in Figotin and Kuchment [123])
There are no spatial morphological terms or functions involved in the
description, just the permittivity, which is supposed to be a space-dependent
function with changes at the interface boundary.

When these equations are phase averaged to represent the macroscale
characteristics of wave propagation in a two-phase dielectric medium, the
equations become

V-G Vm D) + V- [1 =5 Ls f,,ﬁsl]

o 1 - —
+ V'((?lvfplh) + AQ J. 11V dsy = —A{myp fo (175)

8812

oap|

WX) =

- 1 ~ 1 -
VH(my D fo1) + V-[E .Lsu fpldsl] + 0 _Ls.; Vi -ds,
= —A[m ¥ Ty + <my el (176)

The three additional terms appear along with the porosity (or volume
fraction) function {m,) as a factor on the right-hand side of each of the
equations. When the dielectric permittivity function is homogeneous in each
of the two phases, then the VAT photonic band-gap equations can be
reduced to one equation in each phase and written in a simpler form,

2 7 . L
VA O Jp) + ¥ [AQJ

@852

I 1 - B —
fpldsl] + A0 LS YV “dsy = — A8, {my) for

(177)
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and

- 1 - 1 - _ 7
V2(<m3>-fpl) + V-[_AE LS fpldsz] + e J.as Vi dsy = —Ag,{m, > f,,.

(178)

The equations are almost the same as equations for heat or charpe
conductance in a heterogeneous medium. The similarity of the equations
means that the analysis of the simplest band-gap problem should also be
very similar,

Using DMM-DNM, Pereverzev and Ufimtsev [121] found that exact
micromodel solutions among others features can have “medium. .. internal
generation™ that might be well characterized by the impact of the additional
terms in the VAT Maxwell equations in boih phases and in the combined
electric field and effective coefficient equations; see Sections V and VIIL The
exact closure and direct numerical modeling derived by Travkin and
Kushch [33, 34] demonstrated how important and influential the additional
VAT morphoterms can be (Section I). These terms do not explicitly appear
in either the microscale basic mathematical statements or in microscale feld
solutions. The terms appear and become very important when averaged
bulk characteristics are being modeled and calculated.

V. Radiative Heat Transport iv Porous and Heterogeneons Media

_ Radiation transport problems in porous (and heterogensous) media,
including work by Tien [130], Siegel and Howell [131], Hendricks and
Howell [132], Kumar et al. [133], Singh and Kaviany |'134], Tien and
Drolen [135], and Lee et al. [139], are primarily based on governing
equations resulting from the assumption of a homogencous medium, This
implicitly implies that specific problem. features due to heterogeneities can
be decribed using different methods for evaluation of the interim transport
coefficients, as, for example, done by Al-Nimr and Arpaci [136], Kumar and
Tien [137], Lee [138], Lee et al. [139], and Dombrovsky [140]. Alihough
this kind of approach is legitimate, it presents no fandamental understand-
ing of the processes because the governing equations suffer from the jnitial
assumption that strictly describes only homogeneous media. Further, it is
difficult to represent hierarchical physical systems behavior with such
models as will be touched on later,

Review papers like that of Reiss [141] describe the progress in the field
of dispersed media radiative fransfer. The few works on helerogeneous
radiative or electromagnetic transport (see Dombrovsky [1407, Adzerikho
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et al, [142], van de Hulst {1437, Bohren and Huffman [144], Lorrain and
Corson [145], Lindell et al. {146], and Lakhiakia et al. [147]) approach the
study of transport in disperse media with the emphasis on known scattering
techniques and their improvements.

The area of neutron transport and radiative transport in heterogeneous
medium being developed by Pomraning [148—151] and Malvagi and
Pomraning [152] treats linear tramsport in a two-phase (two materials)
medium with stochastic coefficients. This approach is the same as that which
has been used to treat thermal and electrical conductivity in heterogeneous
media, and to this point it has not been brought to a high enough levei to
include variable properties, their nonlinearities, and cross-field (electrical
and thermal or magnetic) phenomena.

Research by Lee et al [139] on attenuation of electromagnetic and
radiation fields in fibrous media has shown a high extinction rate for
infrared radiation. The problem is treated as a scatfering problem for a
single two-layer cylinder by Farone and Querfeld [153], Samaddar {154],
and Bohren aud Hulfman [1447. The process of radiative heat fransport in
porous media is very similar to propagation of electromagnetic waves in
porous media and will also be evaluated. These two very close fields seem-
not to have been considered as a coherent area. Complicated problems of
propapation of electromagnetic waves through the fiber gratings have been
primarily the subject of electrodynamics. The most notable work in this area
is that of Pereverzev and Uflimtsev [121], Figotin and Kuchment [ 122, 125],
Figotin and Godin [1247, Botten et al. [155], and McPhedran et al. [156,
157). No effort seemns to have been made to translate results obtained for
polarized electromagnetic radiation to the area of heat radiative transfer.

Detailed micromodeling (DMM) of electromagnetic wave scattering has
been based on single particles or specific arrangements of particulate media.
Direct numerical modeling (DNM) of the problem seems enables one to do
a full analysis of ihe fields involved. As already discussed, the analysis of the
results of a DNM is limited in the performance of a scaling analysis, which
is the goal in most situations. Performing IDNM without a proper scaling
theory is like performing experimentis, often very challenging and expensive;
without proper data analysis, it yields a certain amount of detailed field
results, but not the needed bulk or mean media physical characteristics.

Most recent work on radiative transport is based on linearized radiative
transfer equations for porous media. We first review this work to set the
stage for the development that follows. This radiative transport related work
extends our results in the theoretical advancement of fluid mechanics, heat
transport, and electrodynamics in heterogeneous media (Travkin et al. [19];
Catton and Travkin [28, 158]; Travkin and Cation [20, 159-1637; Travkin
er al. [114, 115]) and provides a means for formulaiion of radiative
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transport problem in porous media using the heterogencous VAT approach
and electrodynamics language. Based on our previous work, a theoretical
description of radiative transport in porous media is developed along with
the Maxwell equations for a heterogeneous medium.

1. Linear Radiative Transfer Equations in Porous Media

The equation for radiative transport in a homogeneous medium can be
written in the general form

= SEHV-01) + [0 + k01,

= 1,(0) ,,(T) + 4—1&' K,(;) f Y - QI (r, DYY  (179)
4x

Iv = Iv(r’ Q1 t):

with 1 (r) the absorption and «,{r) scattering coefficients, and for steady
state, using the identity

V-(QI)=Q-VI,,
in the forin

Q-VI, + [, (r) + w011, = %, (07 (T) + % K, (r) J- pleY - O {r, O dCY,
4n

(180)

In terms of a spectral source function §,(s), the equation can be written in
‘a particularly simple form,

1
ﬂv

where the extinction coefficient (total cross section— Pomraning [150, 1517
5

Q-VI, + I, = 5,(s), (181)

B, = w,(} + x,(r).

Linear particle (neutrom, for example) transport in heterogeneous medium
is assumed by Malvagi and Pomraning [1 527 and Pomraning [151] to be
decribed by

. 1 ' .

Q-Vif + Bthy = S(r, Q) + y -[ K(r, Q- Qp(r, X)dY, (182)
4x

W_here the quantities fi(r), x(r), and S(r, Q) are taken to be two-states

discrete random variables. By assuming this, one needs to treat the porous

LT

SRR -
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(heterogeneous) medium as a binary medium that has two magnitudes for
each of the random variables, and a particle encounters alternating segments
of medium with those magnitudes while traversing the medium. When §, X,
and § are assumed to be random variables, Eq. (182) is treated as an
ensemble-averaged equation (see Malvagi and Pomraning [152] asd Pom-
raning and Su [164])

le}jm i &f‘
A; A;

¥

Q’V(PE{E&:})“FPf{ﬁi}{'I’i} =P1{Si} 'l‘i;f:[i pipi+ » I=1,2, j&i

(183)
= f Wi, e,

where {if;} is the conditional ensemble averaged function  at some point r
that is in phase i, and lﬂﬁj“ and 1/7,?" are the interface ensemble-averaged fluxes.
The solution to this equation is also supposed to be ensemble-averaged. The
overall averaging over the both phases is given by

e, Q) = po{} + pa{ifn}, (184)

where p, and p, are the probabilitics of point r being in medium i = 1 or 2,
and {y} is the conditional ensemble averaged value of i/, when r is in
medium |,

Ensemble averaging in this representation is obtained by averaging of
medium features, including coefficients, along a straight line the Q direc-
tion—or by nonlocal 1D line averaging in terms of the physical fields
considered. Most of this kind of work is related to the Markovian statistics
by alternating along the line of two phases of the medium (Pomraning [148,
1517},

The ensemble averaging procedure suggested in (183) signifies that the
two last terms in the averaped equation reflect the finite correlation lengih
{interconnection) in a single nonlinear term By, This kind of averaging
resulls in very simple closure statements derived using hierarchical volume
averaging theory procedures, as shown later. A major problem in using
ensemble averaging techniques is that the processes and phenomena going
at each separate site within separaie elements of the heterogensous medium
cannot be resolved completely with the purely statistical approach of
ensemble averaging.

To make an ensemble averaging method workable, tesearchers always
need to formulate ihe final problem or solution in terms of spacially specific
statements or in terms of the original spatial volume averaging theory
(VAT). Examples of this are numerous; see the review by Buyevich and
Theofanouns [165].
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2. Nonlocal Volume Averaged Radiative Transfer Equations

The basis for the development in this field will be the volume averaging
theory. We will present some aspects of VAT that are now becoming well
understood and have seen substantial progress in thermal physics and in
fluid meckanics. The need for a method that enables one to develop general,
physically based models of a gronp of physical objects (for example,
molecules, atoms, crystals, phases) that can be subsiantiated by data
(statistical or analytical) is clear. In modern physics it is usunally accom-
plished using statistical data and theoretical methods. Oune of the major
drawbacks of this widely used approach is that it does not give a researcher
the capability to relate the spatial and morphological parameters of a group
of objects to the phenomena of interest when it is described at the upper
level of the hierarchy. Often the equations obtained by these methods differ
from one another even when describing the same physical phenomena.

The dreawbacks of existing methods do not arise when the VAT math-
ematical approach is used. At the present time, there is an extensive
literature and many books on linear, homogeneous, and layered system
clectromagnetic and acoustic wave propagation (Adzerikho er al. [142F;

Bohren and ITuffman (144} Dombrovsky [1403; Lindell er al [146];

Lakhtakia er al [147]; Lorrain and Corson [£457; Siegel and Howell [1317;
van de Hulst [1437). It is surprising that these phenomena are often
described by almost identical mathematical statements and governing equa-
tions for both heterogencous and homogeneous media.

Major developments in the unse of VAT, showing the potential for
application to eletrophysical and acoustics phenomena in heterogeneons
media, are found in Travkin and Catton [21], Travkin et al. [159, 114, 115],
and with experimental applications to {erromagnetism in Ryvkina er al
[160, 1627 and Ponomarenko et al. [161].

It has been demonstrated during the past 20 years of VAT-based
modeling in the thermal physics and finid mechanics area (see Slattery [6];
Whitaker [10]; Kaviany [71; Gray et al {8]) that the potential of the
approach is enormous. Substantial success has also been achieved in
analyzing the more narrow phenomena of electromagnetic wave propaga-
tion in porous media.

We consider here radiative transfer in porous media using a hierarchical
approach to describe physical phenomena jn a heterogeneous medium. The
physical features of lowest scale of the medium are considered and their
averaged characteristics are obtained using special mathematical instru-
ments for describing hierarchical processes, namely VAT, At the next higher
level of the hierarchy, physical phenomena have the physical medium
pointwise characteristics resulting from averaged lower scale characteristics,
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The same kind of operators and averaging theorems used in preceding
sections are applied to the following development, involving the rot oper-
ator, in which averaging will result because of the following averaging
theorems:

1 -
<VXf>1:VX<f>1+E as.zdslx{ (185)
1 . o
= - ds, x1. 186
{Vx_}, VX{f}1+AQJ;3u 5y X (186)

Rigorous application to linear and nonlinear electrodynamics and electro-
static problems is described in Travkin et al. [114, 115]. o
The phase averaging the equation for linear local thermal equilibrium

radiative transler,
1 #
QVIV + ﬁv{r)Iv = Ka(r)Ivb(T} + ;1; ?Cs(l') .[ p(Q’ 'Q)I,(l’, n,) aQ s (187)
4x

in phase 1 yields the VAT radiative equation (VARE)

i

Q- [V(I”h + AD a5 IVLESI:I + <§vl.fv1>1

= e (T, + 52 o = Buluds i=1 (188)

(o= J. Q- (x, ) dty,
4=

when it is assumed that x; is a constant, as done by Malvagi and
Pomraning [152], Pomraning and Su [164], and others.

The additional ferms appearing in the VARE in some instances are
similag, but in others they have a different interpretation in the ensemble
averaged equation (183). For example, the ferm

~ B>y (189)

in (188) is the result of flucfuations correlation inside of medium 1 in the
REV, but it is described by

Pji//}e . Pi’;/’.' (150) :
i i

in Malvagi and Pomraning [152], as it is an exchange of energy term
between the two phases across the interface surface area 2S,,. Because
ensemble averaging methodologies in Malvagi and Pomraning [1527 do not
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treat nonlipear terms very well and incorrectly average differential operators
such as V., terms do not appear in equation (183) that reflect the interface
flux exchange. In YARE, Eq. (188), the interface exchange term naturally
appearts as a tesult of averaging the V operator,

1 -
I — . 191
Q (AQ LS;: I“ds‘l) o

When the coefficients in the radiative transfer equation are dependent
functions, more linearized terms are observed in the corresponding VARE,

Q'V<Iv1>1 + <EVIT?I>3
- s | I oA
= (Kgu L (TW1 + GRS o ({E 04 + (R P11

1 q 5T .
B Q'(E Lsu 1,1.151) — Bl i=1 (192

while continuing to treat the emissivity as via the Planck’s function. This

equation should be accompanied by the VAT heat transfer equations in

both porous medium phases (see, for example, Travkin and Catton {211).
The heat transport within solid phase 2, combining conductive and
possible radiative transfer, is described by

-8, " "1 -
<52>(PCP)2 _a_t;" - k2V2(<SZ> TZ) * kzv.l,ﬁ .LSL: Tld SZJ
vl [ yrds s vecgy, v rd (193)
Ag 2512 2 Sl q 2 AQ 382 q -

The third and fifth terms on the r.h.s. model the heat exchange rate between
the phases. In an optically thick medium, for example, the radiation Hux
term written in terms of the total blackbody radiation intensity is

s, = (2 v Ay (e |
v<q>z—V< 3ﬁV(1b)>2—V< 3ﬁv( . )> (194)

where f is the total extinction coefficient. An energy equation similar to Eq.
(193) needs to be written for the fluid-filled volume, phase 1 of the porous
medium, The radiation flux term would be much more complex because of
the spectral characteristics of radiation in a flnid.

Closure is needed for the second, third, and fifth terms in Eq. (153) on the -

rhs For convective heat exchange, the last term can be written

k 8T - .
Klﬁ _[ sy =85, 8 ,({T} — {T},) (195)

8812 axi

e i
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by noting that

1 aT - i oT
R _—-d = - — k - dS' n
AQ 7[3512 kz axi "2 ALY jﬂSu 2 anl !

=30 q; “ds, = iy S({ThH — {T}a)- (196)

AQ Jas,,

This type of closure procedure is appropriate for description of fluid—-solid
media heat exchange and has been considered by many as an analog for
solid—solid heat exchange. A more strict and precise integration of the _heat
flux over the interfce surface, using the 1Vih kind of boundarg{ conditions,
gives the exact closure for the term in the governing equations fqr the
neighboring phase. This would be an adequate solution for the portion of
heat exchange by conduction fo and from the fluid phase, a conjugate
problem. : -

The radiative energy exchange across the interface surface is dlﬂicul.t to
formulate because of ils spectral characteristics and the boundary conditions
that must be satisfied. When the fluid pbase is assumed to be optically thin,
an approximate closure expression results,

1 . i o(Tt, — T34) -d
o TG+l P S S S
#5121 8812 (__'__ 4= 1)
&

12 Eay

_a(F1* — (7309512

-1 .
Eya  Bay

using an interpretation of the averaged surface temperatures on opposite
sides of the interface developed by Malvagi and Pomraning [152]. Another
approximation js justifiable for an optically thick fluid phase. It uses the
specific blackbody surface radiation intensity I, = n2cT%; to close the
integral energy exchange term as follows:

1 - 1
— Teds, 22—
AQ aSuq ? AQ 2551

(197)

(PoTids, = 6:0(T51)* 512 (199)

Here, ¢, is the total radiative hemispherical emissivity from phase 2 to
phase 1 in the REV.

The closure of Egs. (183) is accomplished by assuming equality (Malvagi
and Pomraning [152]; Pomraning and Su [164]) between the interface
surface and ensemble (1D in this case) averaged functions,

o = () (199
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as was done in heat and mass transfer porous medium problems; see, for
example, Crapiste ef al. [41].

3. Radiation Transport in Heterogeneous Media Using Harmonic
Field Equations

Representing the electromagnetic field components with lime-harmonic
components results in

V-(e,E)=p, V-, H)=0 (200)

VxE = —iop, H, VxH =iwE,E. {201)

Here, as ouilined earlier, &, is the complex dielectric function E&,=¢,

—i(o fw), and g; = £,(¥), 5, = 0, (%), u, = p, (X, ), £, = £,(¥,w). In many

contemporary applications the spatial dependency of these functions is

neglected. Electrophysical coefficients often need to be treated as nonlinear.

For example, the dielectric function can depend on E and ¢, = £,(X, I). The

wave formulation of the Maxwell equations with constant phase coeflicients
for the magnetic field is

oH H
VH — .0, T I e 0, (202)

whereas the-electric field wave equation is almost the same,
i1 #*E p
VE — —_— — =V}
HnT, ot Emta atz v (E) (203)

Another form of the equation for E appears in Cartesian coordinaies
when eleciromagnetic felds are time-harmonic functions:

VE 4+ E’E = 0, (204)

Here, the inhomeogeneous function k? = w®p,e, is the wave number
. squared. This equation is often applicable to linear acoustics phenomena.
This category of equations can be transformed to a form legitimate for
application to heterogeneous media problems.

The time-harmonic forms of equations for rot of electromagnetic fields are
Vx (Gm K + ﬁ Lsu ds, xE, = —io[{m i, H, + {my {01,
(205)
V x ({m S, + 315 _Ls.: ds, x H, = io[{m e, B, + <:n1>{§,;1i‘c1]. '

{206)
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The magnetic field wave form equation with constant coefficients, when
averaged over phase 1, transforms to

=% 1 - 1 _—
V2(<1‘”1>H1) -+ V' [m J‘asu Illdsl] + Bﬁ J'asu V}Il - dSl

T4 3 B 92D,
- Hruae at - + l"mad atz E] (207)
and the electric field wave equation (203) becomes
o 1 - 1 -
2 i o} .4 — VE!-ds
ViH{{mOE)+V L\Q Lsu I Sl] + AD Lsu 1
B(E>, PEy, 1 . i ..
= nltnlag at =+ Hen B4 atl + £ V(<m1>p1) + EJAQ | iSaa 251 1
(208)

An analogous form of the averaged equation is obtained for the time-
harmonic electrical field:

T 1 i 1 3 1T
VH{mOR,) + Vlim .LSu EldSI] + A0 . VE,-ds, + (mpk E, =0

(209}

mt i oot o b i 2

It is the naturally appearing feature of the heterogeneous medium elec-

trodynamics equations as the terms reflecting phenomena on the interface

surface 85,,, and that fact is to be used to incorporate morphologically

: precise polarization phenomena 2s well as tunneling into heterogencous
clectrodynamics, as is being done in fluid mechanics and heat transport

~ (Travkin and Catton [21]; Cation and Travkin [28]). N -

© Using the orthogonal locally calculated directional fields F,, and E,, of

averaged electrical field E,, one cap geek the Stokes parameters 1, O, U,

and ¥
I = (B B, A B ERD, (210)
0 = By B> — <E B, (211)
k U = Re[2E,, E5D.) (212)
- V = Im{<2E,, EX .1, (213)

which characterize the intensity of polarized radiation in a porous medinm.
We will not here construct the gencral forms of equations for effective
coefficients, as this will be done in a succeeding section for the case of
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temperature fields; still, the same questions of multiple versions, applicability
of current methods, and vanance in interpretation are the present agenda.

VAT-based models were developed recently while addressing the prob-
femns of modeling of electrodynamic properties of a liquid-impregnated
porous ferrite medium (Ponomarenko et al. [1617), coupled electrostatic-
diffusion processes in composites (Travkin et al. [1597), and to analyze heat
conductivity experimental data in high-T, superconductors (Travkin and
Catton [166]). Powders of ferrites with NFMR frequency in the microwave
range were used as the porous magnetic medium in Ponomarenko et al
[161]. The search for tunable levels of reflection and absorption of elec-
tromagnetic waves was conducted using a few morphologies that were
arbitrarily chosen. Thus, the need for closer consideration of experiment and
models presenting the data using VAT heterogeneous description tools for
both became obvious.

V1. Flow Resistance Experiments and VAT-Based
Data Reduction in Porous Media

Tt is well known that existing measurements of transport cocfficients in
porous {and heterogencous) media must be used with care. As long as a
complete description of an experiment is provided and the data analysis is
carried out using correct mathematical formulations (models), the relation-
ship between the experiment and its analysis is maintained in a comsistent,
general, and usefil way. Unfortunately, this is not always the case, because
heuristic equations and models are often the basis for coefficient matching
and model tuning when heterogeneous medium experimental data is re-
duced to correlations.

The various approaches, and even disarray, in the field can be contributed
to a lack of understanding of the general theoretical basis for transport
phenomena in porous and heterogeneous media. As long as the correlations
used for momentum transport comparison are generated from empircal
Darcy and Reynolds—Forchheimer expressions, or effective heat and electri-
cal conductivity and permittivity derived from homogeneous models, prob-
lems in heterogencous media experimental validation and comparison will
persist.

Modeling based on volume averaging theory will be shown to provide a
basis for consistency to experimental procedures and to data reduction
processes by a series of analyses and examples. Many of the common
correlations, and their weaknesses, are examined using a unified scaling
procedure that allows them to be compared to one another. For example,
momentum resistance and internal heat transfer dependencies are analyzed

s
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and compared. VAT-based analysis is shown to reveal the influence of
morphological characteristics of the medium,; to suggest scaling parameters
that allow a wide variety of different porous medium morphologies to be
normalized, often eliminating the need for further experimental efforts;_and
to clarify the relationships between differing experimental configurations.
The origin, and insufficicncy, of electrical conductivity and momentum
transport “cross-correlation” approaches based on analogies using math-
ematical models without examining the physical foundation of the phenom-
ena will be described and explained.

1. Experimental Assessment of Flow Resistance in Porous Medium

A one-term flow resistance model for porous medium experimental data
analysis often used is

b Su Bii:‘i 214
_dxyf(<m>) 2’ -

where f is some coefficient of hydraulic resistance. On the other hand, most
two-term models used for flow resistance experimental data reduction have
first-order and second-order velocity terms, the Darcy—Forchheimer flow
resistance models. These models were obtained primarily for direct compari-
son with eslablished empirical and semiempirical Darcy and Darcy—¥or-
chheimer type flow resistance data. Thus, the momentum equation for
laminar as well as the high (iurbulent) flow regime often used is the model

by Ergun [167],
gﬂhmﬁowﬁ+pﬂ«my?. (215)

dx  kp

Similarly, the model given by Vafai and Kim [168] for the middle part of

a porous layer is

b _

" - F .
ik myit + pp{md? T u?, (216)

and the Poulikakos and Renken [169] equation for the turbulent regime is

dp _ p - .
—— =+ p A’ 217
dx  ky Pr (
Analysis of a simple idealized morphology where solutions are known will
show that the Darcy and Darcy—Forchheimer or Ergun type model corre-
lations are not matched consistently for any regime. Further, they are also
without theoretical foundation. Thus, problems arise when studies to
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improve the description of transport use combined models [or flow resis-
tance and momentum transport in a porous medinm becavse the analysis
does not start with the correct theoretical basis. Further, which of the three
equations just listed should one use?
A model of ideal parallel tube morphology yields the following Darcy
friction coefficient (see, for example, Schlichting [170]):
8t d,Ap

So=——2—, t,=tL w2 el (218)
? (p,U%) 4L Yoy 8

Ap dp 4 2 Jo o, U?

T Tax a,PTa 2

The morphology function §,/¢{m} for a straight equal-diameter tube mor-
phology is

219

2
88, 2R nRO S 4 (220)
AQ  pAy pAy’ (m) 4,
and an exact expression for the Darcy friction factor is
A {7 2d, A
T fem P (221)
Py UZ L’
The Fanning friction factor for this specific morphology 15 (usmg (2200
2 2
AP fD pr D pj' U (222)
L4 d,l 2 (m} 2
A
= (223)
2p .U

and a relationship to the Parcy friction coefficient is (Travkin and Catton
[16, 20T)

=== (224)

The friction coefficient ¢, for smooth tubes often calculated using the
Nikuradze and Blasius formulas [170] is the same as the Fanning friction
factor.

A model representing a porous medium with slit morphology was treated
in conformity with the definition

A 2 2 2
Tw - —P h = C} ———p'r 3 (:’j- = r;, = —2:* = 2’; ég, ui = ,J_‘l_. ép__
L 2 prz 7? Py irz L Py L
(225)
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The morphology ratio §,,/{m} for a porous medium morphology model of
straight equal slits is found as follows:

(2LAyY) 2 (HLAy) _H

L St LA . 226
* T (pLAy) P’ K = (pLAYY P (226)
s 2 1
S _2_1 - 227
m> H I° d, = 4h, 227)

vielding the Fanning friction factor,

dp LAp p, U p, U7
- eT) e

I-{ Ap
Pfﬁz L

= (229)

As one can easily see, these flow resistance models are written with the
second power of bulk velocity variable. The convergency of the VAT-based
flow resistance transport models to these classical constructions was dem-
onstrated on several occasions by Travkin and Catton [16, 20, 21, 23] and
Travkin ef al. [25].

Exact flow resistance results obtained on the basis of VAT governing
equations by Travkin and Catton [16, 26, 23] lor the random pore diameter
distribution for almost the same morphology as was used by Achdou and
Avellaneda [171] demonstrated the wide departure from the Darcy-law-
based treatments. That was shown even for the morphology wherée a single
pore exists with diameter different from the all others. Meanwhile, by
consistently using the VAT-based procedures (Travkin and Catton [23]),
one can casily develop the needed variable, nonlinear permeability coeffi-
cient for Darcy dependency,

5. VO !
B

where ¢, = f; is derived for this particular morphology using exact analyti-
cal (in the laminar regime) or well-established corretations for the Fanning
frction factor in tubes. :

2, Momentum Resistance in 1D Membrane and Porous Layer Transport

The steady-state VAT-based governing equations for laminar transport in
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orous media (Travkin and Catton [21]) are

a0 8 . 14
mylU ™ + ™ i, + ;J—J; Fe (Kmy{p};)

1 ~ 2 [eemdU v au =
~ y PELAY LA PR ds (31
pfAanw””ax( i )+AQ =L )

and

~ 8T 8 [am>T, a PO
CP!pf(m)UEcizkfa[ P f]—{- c”pfa({m){_’l}u}f}

o [k, T aT, .
I — —2 - 232
* o \:AQ .st I ds] +* g L,sw rox, 45 (9D

9 (AH{TY, 81 . i T,
Rl ASTA G2 ) C) DI Pl S ds. =0, (23
Bx( o ) | B0 Ju, P AR S, B (233)

The momentum equation for turbulent flow of an incompressible fluid in
porous media based on K-theory can be written in the form (Gratton et al.
[26], Travkin and Catton [20])

ali = a0 1
<m> (@? + U,a;)

al - D . a0
w(1r<:,,, +7) -a;i_-ds +a [@;)(Km + ) EE]

an
B . du F s
2l RS |+ g mti)

' 1 - i 0 .
- [pfAﬂ st Pd-{l ry Ix ({m>p). (234)

By comparing these equations with conventional mathematical models and
experimental correlations, one can easily see the differences.

 The one-dimensional momentum equation for a homogeneous, regular
porous medium is

il _ 1 - u =
o (Pl = A0 Ls... pds — TmSAG _st vv-ds. (239

Closure of the flow resistance terms in the simplified VAT equation can be
oblained following procedures developed by Travkin and Catton [16, 17].
The skin friction term is :

i) i - Py s 1 _ . -
il S ds= o= — = < 2
AQ .stL B, s 0 AQ s Typ 48 3 ch{x)ng(x }[pr (x)1,

(236)
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with

au

T = Uy, = 3C ﬁzf N
wl it Ax H i3 % JL ( )

i
and closure of the form drag resistance integral term using a form drag
coeffictent, ¢, 15

1 - 1 - = o
G st pds = 5 CapSup(Op, THEN) @37)
For these equations, the specific surface has two parts. The first part, 8,,., 15
1 1
S (X)) =— d — 238
S1WL(¥) AQ s 5, (Tn), ( )

where 28, is the Jaminar subregion of the interface surface element IS,
and

1 s, (1
— i — 239
Swel®) AQ J‘as‘.:P ds AQ’ (’"), @)

where 85, is the cross flow projected area of the surface of the solid phase
inside the REV. Substitution into the one-dimensional momentum equation
vields

d

. rp}f = (C'IL(x)S wL(x) + cdpSwp(x))

o P P womy. @40)

Um) ()
When the porosity is constant, the flow is laminar and S, =.5,, the
equation becomes :

—

dp S Su \ o 07 = S, \p, 0
oL g Dwp A D = w YEf 7 241
T (af + c4p S“,)((m)) 5 c (U, Mg s 5 (241)

where ¢, is the friction factor and c,, the form drag, S, is the cross flow
form drag specific surface, and My, is a set of porous medium morphological

parameters or descriptive functions (see Travkin and Catton [16, 207). The
drag terms can be combined for simplicity into a single total drag coefficient

to model the flow resistance terms in the general simplified momentum VAT

equation

e, (U, Mg) = (c L+ e %ﬁ) (242)

Correlations for drag resistance can be evaluated for a homogeneous
porous medivm from experimenial relationships for pressure drop. For
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example, the equation often used for packed beds is
dp 5.\ 25 02 .
— = — .. 243
dx Tr ({m)) 2 (243)

The complete VAT version of this equation is

F; ! - 2
Fe ({m>p) + A0 st pds + ppunaS,(x)

- 8T g [aemyl] @ .
=—(m)prw+p5;[<g‘x> ilil—:a;[pf(m){—uu}f]_ (244)

ox

If the perosity function is constant (a frequent assumption), the left-hand
side of Eq. (244) reduces to

db_ (S \e 02 |

Setting Eq. (245) equal to zero recovers equation (243). As a result, data
correlation using Eq. (243) incorporates the right-hand side of Eq. (244)
implicitly into the correlation. Friction factor data presented in this way
detracts from objectivity. The correlation can be written.to reflect all the
right-hand terms from Eq. (244},

Pfﬁl

> (246)

;ﬁg:(%'{“cw i.wp +F,+F, +F3) {S.0x)

where Fy,..., F, are deduced from the following relationship:

U? - 8U a
(F, +F,+ Fy) (Sw(x) sz ) = <m>ﬂfU x + py e [(”‘){ﬁﬁ}f]
d jamilU

L [ T ] (247)

In the middle part of a porous medium sample, one can assume that the
porosity and flow regime are constant and steady state and then neglect all
terms on the right-hand side of (244). In reality, 2 large number of
experiments are being carried out under conditions where input—output
zones are present and can add significantly to the value of the friction
coefficient because of the input-output pressure losses. If one wants to
separate the effects of input—output pressure loss from the viscous friciion
and drag resistance components inside the porous medium, then taking into
account the terms shown in Eq. (247) is essential. There are correlations that
reflect a dependence on sample thickness as a result of this oversight. An
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even more complex situation arises when the flow and temperature inside
the medinm are transient, such as one might find in a regenerator, and very
inhomogeneous in space because of sharp gradients, The inhomogeneity in
space and time precludes neglecting the four right-hand terms in Eq. (244).

The inhomogeneons terms on the right-hand side of (247) may be
analyzed by scaling. Some of these terms are easily interpreted. IFor example,
the first term on the right-hand side is the convective term

r/2 -
(Sw(x) pf; ) F, = <"’>P[ﬁ %_g, (248)

and its importance can be strongly dependent on the thickness of the porous
specimen. This is why many studies report an obvious correlation with
specimen thickness. The remaining terms are the “morphoconvective” term

(S,..(x) vt

Pr
2
and the momentum diffusion term

0,02 8 [amyD
(Sw(x)g )Fs——,ua[ i ] (250)

) 2= g o ) (249

The complete momentum equation written in a proper form for experi-
mentat data reduction is
2

d({m) ) S U
B P Cf+cdp's_j+F1+F2+F3 {(§..(x) 3

F12

u
= (s + RS0 P, (@51)
where
b
Cq=C;+ Ly TS'EE (252)
w
and
Ry=F, +F, +Fy. (253)

The features of an experiment needed to treat terms such as Fy, Fy, F are
discussed later.

The momentum resistance coefficient for a heterogeneous porous medium
can be written in the form

Joor = €a -+ Ryg. (254)
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This is the variable usually determined in most of porous medivm flow
resistance expcnments Nevertheless, if this correlation value taken from an
experiment is later substituted inlo a modeling equation {with varnable
porosity) of the form

_ ol alod 3 >
iyl — = —— (("'l){P}f) TV o ( <3;;> ) o) (ﬂ(j;) pfz
(255)
ot
- a 9 U
<mylr — —'"*“‘_(<m>{p}f)—1 Vax ( <:‘;13 )
u 2 3 I

— K )T = s E}Tl o, 256)

as is donme by many, then the fluctnation term amy{ i} ,1/0x is
neglected and the equation

11 KU
2{m>UEC-=—;}——‘(<m>{P}I) + 2 ax( <];J: )

1 v U . @
- — - —_ LT N
prAQ Ls pds 55 AL ,Ls,. ax; ds -+ ox [{my{ i} ] (257)
is being used as the problem’s model instead of

~
IR N R (“’;f”)

1 - ¥ au - :
T p,AD st Pds +3a Ls,,a ”' [mp{—aat, 1 (258)

because the model used the coefficient ¢,(x) determined from

enlx) <S ((x))> L 5 = (€alx) + Ry(x) Zi:((xx))> p—fg"
= (c,+cdp 'S;:+ Fi+F+ F, ) <m((;))> pf;
- E}A‘ﬁ J'm pls—s LS 0. o2 Komy (=) ]
—v % (30;_3 ﬁ) + D %i—’r (259)
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instead of using the coellicient ¢ (x) determined from

r72 U2
£4(%) 5,(x) Pff :(Cf‘{“cdp Sw,,_I_F) S (JC) Pl

<m(x)) S {m(x)) 2
- ds — U s += [(m){uu} 1
A Jis, T T AQ s, 0% I

(260)

The terms needed for experimental data reduction model should include
all five active terms,

d i hY
D) (e,

f}z
S“"” + Fy + Fy o+ Fs) (S0 £

2

61)
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with
fpor = €4 + RM- (262)

The general 1D VAT laminar regime constant viscosity momentum equa-
tion has six terms,

<m>U = + = <ﬁﬁ>f ir — (<m>{p};)

1 AU v au
_ 8 famUN v Y g (263
pfAQJ. pd”"ax( % )erstax,.‘s_ (263)

For simplicity, Bq. (263} is written in the following shorthand notation:
UC, + UMC, + UP; = —~UMP, + UD, + UMF,. (264)

The two right-hand integral terms reflect the morphology-induced flow
resistance of the medinm. Three flow resistance models are needed to
properly tie everyihing together. :

a. Flow Resistance Model 1 The first flow resistance model is for the
internal frictional and form drag resistance:

~ S 2
(T, Mg, %) (Lgl-@) (= capSunlt) — 7S 23

1 v U
= - d —-ds.
prAQ L P TR0 J‘as... ax; ’

(265)

U(x)
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