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Transport Phenomena in
Heterogeneous Media Based on
Volume Averaging Theory

V. S. TRAVKIN and 1. CATTON

Department of Mechanical and Aerospace Engineering
University of California, Los Angeles
Los Angeles, California 90095

1. Introduction

Determination of flow variables and scalar transport for problems
involving heterogeneous {and porous) media is difficult, even when the
problem is subject to simplifications allowing the specification of medinm
periodicity or regularity. Linear or linearized models fail to intrinsically
‘account for transport phenomena, requiring dynamic coefficient models to
correct for shortcomings in the governing models. Allowing inhomogeneities
to adopt random or stochastic character further confounds the already
- daunting task of properly identifying pertinent transport mechanisms and
predicting transport phenomena.

This problem is presently treated by procedures that are mostly heuristic
in nature because sufficiently detailed descriptions are not included in the
description of the problem and consequently are not available. The ability
to describe the details, and features, of a proposed material with precision
will help reduce the need for a heuristic approach.

Some aspects of the development of the needed theory are now weil
understood and have seen substantial progress in the thermal physics and
in finid mechanics sciences, particularly in porous media transport phenom-
ena. The basis for this progress is the so-called volume averaging theory
(VAT), which was first proposed in the 1960s by Anderson and [ ackson (17,
Slattery [2], Marle [3], Whitaker [4], and Zolotarev and Radushkevich [5].
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2 V. S. TRAVKIN AND I. CATTON

Further advances in the use of VAT are found in the work of Slattery [6],
Kaviany [7], Gray et al. [8], and Whitaker [9, 10]). Many of the irpportant
details and examples of application are found in books by Kheifets and
Neimark [11], Dullien [12], and Adler [13].

Publications on turbulent transport in porous media based on VAT
began to appear in 1986. Primak et al. [14], Shcherban et al. [15]. and later
studies by Travkin and Catton [16, 18, 20, 21], etc., Travkin et al. [17, 19,
221, Gratton et al. [26, 27] and Catton and Travkin [28] present a
generalized development of VAT for heterogeneous media apphc."able to
nonlinear physical phenomena in thermal physics and fluid mechanics.

In most physically realistic cases, highly complex integral-differential
equations result. When additional terms in the two- and three-phase
statements are encountered, the level of difficulty in attempting to obtain
closure and, hence, effective coefficients, increases greatly. The largest
challenge is surmounting problems associated with the consistent lack of
understanding of new, advanced equations and insufficient development of
closure theory, especially for integral—differential equations. The ability to
accurately evaluate various kinds of medium morphology irregularities
results from the modeling methodology once a porous medium morphology
is assigned. Further, when attempting to describe transport processes iq a
heterogeneous media, the correct form of the governing cquations remains
an area of continuously varying methods among researchers (see some
discussion in Travkin and Catton [16, 21]).

An important feature of VAT is being able to consider specific medium
types and morphologies, lower-scale fluctuations of variables, cross-effects gf
different variable fluctuations, interface variable fluctuations effects, etc. It 1s
not possible to include all of these characteristics in current models using
conventional theoretical approaches. The VAT approach has the following
desirable features:

1. Effects of interfaces and grain boundaries can be included in the
modeling.

2. The effect of morphology of the different phases is incorporated. The
morphology decription is directly incorporated into the field equa-
tions.

3. Separate and combined fields and their interactions are described
exactly. No assumptions about effective coefficients are required.

4. Fflective coefficients correct mathematical description— those “the-
ories” presently used for that purpose are only approximate descrip-
tion, and often simply wrong.

5. Correct description of experiments in heterogencous media —again, at
present the homogeneous presentation of medium properties is used

VOLUME AVERAGING THEORY 3

for this purpose, and explanation of experiments is done via bulk
features. Those bulk features describe the ficld as by classical homo-
geneous medium differential equations.

6. Deliberate design and optimization of materials using hierarchical
physical descriptions based on the VAT governing equations can be
used to connect properties and morphological characteristics to com-
ponent features. What is usually done is to carry out an experimental
search by adding a third or a fourth component to the piezoelectric
material, for example. This can be done in a more direct, more
observable way, and with a more correct understanding of the effects
of adding additional components and, of course, of the morphology of
the fourth component.

In this work we restrict ourselves to a brief analysis of previous work and
show that the best theoretical tool is the nonlocal description of hierarchical,
multiscaled processes resulting from application of VAT. Application of
VAT to radiative transport in a porous medium is based on our advances
in electrodynamics and microscale energy transport phenomena in two-
phase heterogeneous media. Some other governing conservation equations
for transport in porous media can be found in Travkin and Catton [21] and
the references therein.

One of the aims of this work is to outline the possibilities for a method
for optimizing transport in heterogeneous as well as porous structures that
can be used in different engineering fields. Applications range from heat and
mass exchangers and reactors in mechanical engineering design to environ-
mental engineering usage (Travkin et al. [19]). A recent application is in
urban air pollution, where optimal control of a pollutant level in a
contaminated area is determined, along with the design of an optimal
control point network for the control of constituent dispersion and remedi-
ation actions. Using second-order turbulent models, equation sets were
obtained for turbulent filtration and two-temperature or two-concentration
diffusion in nonisotropic porous media and interphase exchange and micro-
roughness. Previous work has shown that the flow resistance and heat
transfer over highly rough surfaces or in a rough channel or pipe can be
properly predicted using the technique of averaging the transport equations
over the near surface representative elementary volume (REV). Prescribing
the statistical structure of the capillary or globular porous medium mor-
phology gives the basis for transforming the integral-differential transport
equations into differential equations with probability density functions
governing their coefficients and source terms. Several different closure
models for these terms for some uniform, nonuniform, nonisotropic, and
specifically random nonisotropic highly porous layers were developed. Quite
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different situations arise when describing processes occuring in irregular or
random morphology. The latest results, obtained with the help of exact
closure modeling for canonical morphologies, open a new field of possibili-
ties for a purposeful search for optimal design of spacial heterogeneous
transport structures. A way to find and govern momentum {ransport
through a capillary nonintersecting medium by altering its morphometrical
characteristics is given as validation of the process.

I1. Fundamentals of Hierarchical Volume Averaging Techniques

Since the porosity in a porous medium is often anisotropic and randomly
inhomogeneous, the random porosity function can be decomposed into
additive components: the average value of (m{x)> in the REV and its
fluctuations in various directions,

M) = @)+ ), =k,

The averaged equations of turbulent filtration for a highly porous
medium are similar o those in an anisotropic porous medium. Five types
of averaging over an REV function f are defined by the following averaging
operators arranged in their order of seniority (Primak et al. [14]): average
of f over the whole REV,

=D+ =D+ (L = D))V (H

phase averages of f in each component of the medium,

i1 . -
Dori=md g | S Do = ©)
1 .
o= Lmy AQ, Lﬂ; St X)deo = {my 3 f, 3
and intraphase averages,
. 1
{f}1=f1=;m—l - S, X}y dw 4
i 1
== 2 = —_— N x d X 5
R UL ®

When the interface is fixed in space, the averaged functions for the first

and second phase (as liquid and solid) within the REV and over the entire
REV fulfill the conditions

L%
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{f+ah={fl1+{g}y and {4} =a=const (6)
for steady-state phases and
a i) = _
o A G- )
- J1

except for the differentiation condition,
~ 1 -
: =V —_— d
{Vf}l f+ Agf J‘asw f Sy

F=r—% fvaq, (®)
where 35, is the inner surface in the REV, and ds is the solid-phase,
inward-directed differential area in the REV (ds = 7iaS). The fourth condi-
tion implies an unchanging porous medinum morphology.

The three types of averaging fulfill all four of the preceding conditions as
well as the following four consequences:

{f}1=}: {f}lx{f*fh:() )
{foh =15, {foh,=F4=0 (10)

Meanwhile, {f%, and {f), fulfill neither the third of the conditious,
{ay, #a, L&y, ={mpDa, (11

nor all the consequences of the other averaging conditions. Futher, the
differential condition becomes

1

in accordance with one of the major averaging theorems—the theorem of
averaging the V operator (Slattery [6]; Gray et al. [8]; Whitaker [107).

1f the statistical characteristics of the REV morphology and the averaging
conditions with their consequences lead to the following special ergodic
hypothesis: the spacial averages, ({/>,, /, and {f},), then this theorem

VI =V + fds,, . (12

converges with increases in the averaging volume to the appropriate

probability (statistical) average of the function f of a random value with
probability density distdbution p. This hypothesis is stated mathematically
as follows:

P =" 15 e, %) o

lim f= % (13)
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Quintard and Whitaker [29] expressed some concern about the connec-
tion between different scale volume averaged variables, for example,

1 .
=5 Ln; T, deo (14)
. -
1
{Tf}f = E—ﬁ; J;ni Tf dﬂ). (15)

In a truly periodic system it is known that the steady temperature in phase
f can be written as

Tyt =h-r, + i}(rf) + To, (16)

where h and T, are constants and ’f}(r )} 15 a periodic function of zero mean
over the fophase. Applying the phase averaging operator { >, to this
function, one finds

Gy, =h G0+ (T ), + md T,
while Quintard and Whitaker [29] obtain (their Bq. (13))

{Tyle Yoy = KT 0 p = he (o + {mp T, (17)
meaning that

<'f}[|_-f Df =0. (18) i F1a. 1, Representative elementary averaging volume with the “virtual™ points of representa-

The parameter <j’} (H’))f cannot always be equal to zero, because it tion inside of the REV (Carboneil and Whitaker [317); Quintard and Whitaker [29]1).
depends on the peculiarities of the chosen REV. In some instances, when the
REYV is not the volume that contains the known pumber of exact function

" periods, the averaged function ¢ f}(r 1> r value should not be zero. I it is position vector ¥, as indicated in Fig. 3” (see Fig. 1), or
assumed, however, that the REV volume AQ coniains the exact number of
spacial periods, then : Fr= X+ Y= {50 yb =%+ {y, (. 9}, (22)

so that Eq. (21) can be written with dependence on both x and r,

{To0e v}, ={Tp(x, {y, 30} p=h-x + b {y, (), Xy + Troo  (23)

(Tr)>,=0.

Avérég;ing the flnid temperature, Ty, over AQ, yields the intrinsic average

T . = h- T = k- h- T 19 ' mt‘:f%n‘ing that aft:cr averaging, T.(r,) continues to be dependent on the
{7y )}_f {rf b +. 0 x +. s+ o (%) position of the “virtual” point r,, which may have changed location within
because the averaging of r, (see Fig. 1) results in the AQ,. .
) =x+ 1,0 (20) To do this, they introduce a so-called “virtual REV™ allowing the -

_ averaged value inside of the REV to be variable (see the remark on p. 354
while Quintard and Whitaker [29] obtain (their Eq. (15)) of Quintard and Whitaker {30]: “In all our previous studies of multiphase
B transport phenomena, we have always assumed that averaged quantities

T} =1{T:({r =h-{r},+ T 21
Ty ={Ts b} {erke + Tro 21) could be treated as constants within the averaging volume and that the
They note (see p. 375), “now represent r; in terms of the position vector, . average of the spatial deviations was zerp. We now wish to avoid these
x, that locates the centroid of the averaging volume, and the relative : assumptions...."”), and the result is a “virtual” averaged variable that is not

EEEEE VEE PRI P DR
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constant within the fixed volume of the REV. When Quiniard and Whit-
taker derive the gradient of the average of the function (23), they use its
dependence on x for the two right-hand-side terms in (23) to obtain

VT (% o)} = b+ bV {y (e, ), 24

Several comments about the Quintard and Whittaker treatment that need
to be considered are the following:

1. How the communication of the variables from dilferent spaces r; at the
lower scale space and x at the upper scale space is established is not
meaningful. Their connection must be determined at the beginning of the
averaging process and their communication is very limitad.

2. One should only connect a value at a point at the higher level to the
lower level REV, not only to a point within the lower level REV. When ons
considers an averaged variable at any point other than the representative
point x for a particular REV, then

V{T;R)} ;= V- x + {T,(0}, + Tpo),
and for the upper scale, the exact result is
V{T/00}, = Vx4 Trg) =, 25)

3. If a function and its gradient are periodic, then the averaged function
should be periodic. The VAT-based answer should be seen by determination
of the averaged values, which are not averaged, only the REV being used at
the lower scale.

The work by Quintard and Whittaker and the improving of understand-
ing of some basic prnciples of averaging has led us to state the following
lemma and then point out differences from the work of Whittaker and his
colleagues,

Lemma. If a function , representing any continuous physical field, is
averaged over the subdomain AQ), r» which is the subregion occupied by phase
S { fluid phase) of the REV AL, in the heterogeneous two-phase medium (Fig.
1), and the averaged fimction {i(x)} ; is assumed to have different values at
different locations x, within the AQ, , then the averaged function {\y(x)} ; can
have discontinuities of the first kind at the boundary 8AL, of the REV AQ,.

Proof. Consider the situation where the point y,, (Fig. 1; see also Fig. 3,
p- 375, 1n the paper by Quintard and Whitaker [297) is located an infinitely
distance from the boundary of the REV AQ, within JAQ,. Tt represents the
intrinsic phase averaged value {y, 1y of variable W averaped in the REV
AQ,. According to Carbonell and Whitaker [31] and Quintard and
Whitaker [29], its value can be diflerent from {, }, or {i, },.

YOLUME AVERAGING TIIEORY 9

F1G. 2. Representative clementary averaging volumes with the fixed points of representation.

Next, consider a point y, s located an infinitely small distance outside of
the initial REV AQ, within a boundary 8AQ,. The point y, , Tepresents the
averaged value {5}, which belongs to some REV AQ,, as shown in Fig.
2, with its center at the point %3 = (y3, — &) + (R/2), with ¢ being an
infinitely small constant. :

Following arguments of Carbonell and Whitaker [31], this point y,, is
allowed to be in at least one more REV, AL),, which has its center x, just
shifted from the point x, an infinitely small distance, as does y, s Irom the
boundary JAL,.

Further, suppose that one is approaching the boundary dAQ, from both
sides by points y,  and y, ;. According to Carbonell and Whitaker [31] and
Quintard and Whitaker [29], the values {i,,} , and {§,}, can be different
when 2AQ, is reached, which means that the averaged value {i}, experien-
ces (can have) a discontinuity at each and every point of the boundary
JAQ, .

As long as the boundary dAQ, of the REV can be arbitrarily moved,
changed or assigned, then the consequence of this change is that {3, can
have discontinuities al each point of a REV,
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The relationships between different scale variables and their points of
representation ean be found by noting the following points:

1. There is a fixed refationship between the location of the point x, of the
upper scale field and averaging within the REV AQ,. In other words, for
each determined AQ; there is only one x, that represents the valne
{¥ ()}, on the upper field level (macroscale field) if both are mapped on
the same repion {excluding close to boundary regions).

2. If there is the value {{f (x;)},, (X, —X,) <&, then there is another
AQ, # AQ,, and in it

1
Wl =g [, o gg— [ wieyde, 09

where ;(r,) # const.

A. THEORETICAL VERIFICATION OF CoMTrRAL VAT THEOREM
AND I1s CONSEQUENCES

‘When the coefficient of thermal conductivity k, is a constant value, the
fliid stedy-state conduction regime is described by

=~ k - k ~
2 Jd 8 o -dg = 2
ka" ((m>T}+ V [Aﬂ st des] + .st VI;-ds=0. (27)

The full 11D Cartesian coordinates version of this equation, without any
source, for a fixed solid matrix in is

d T ), a1 1 Ty
— el i (N ) i -0, (28
x [<m> Bx] + dx [AQ J Y ds} AQ _LS ax, ds=0, (28
[<m> ] +MD, +MD,; =0, (29)

where the second and third terms on the right-hand side are the so-called
morphodiffusive teoms, MD, and MD,, respectively (see also, for example,
Travkin and Catton [217),

The solid-phase equation with constant k, equation is of the same form,

H{T ), 1 aT,
(() ) a[EJ. Tds] AQLS k™ -ds, =0, (30)

which can also be written in terms of the fluctuating variable,

azT a1 . 1 T -
-ds, = 0. 3
ax [ J;SW T;dsl] AQ J'as B Sl ( 1)
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Travkin and Catton [16, 18, 20] suggested that the infegral heat transfer
terms in Eqs. (28, (30), and (31) be closed in a natural way by a third (IIT)
kind of heal transfer law. The second infegral term refiects the changing
averaged surface temperatnre along the x coordinate. Equations (28} and
(30) can be treated using heat transfer correlations for the heat exchange
integral term (the last term). Regular dilute arrangements of pores, spherical
particles, or cylinders have been studied much more than random mor-
phologies. Using separate element or “cell” modeling methods (Sangani and
Acrivos [32] and Gratton ef al. [26]) to find the interface temperature field
allows ome to close the second, “surface” diffusion integral terms in (28) (30},
and {27).

Many forms of the energy equation are wsed in the analysis of transport
phénomena in porous media. The primary difference between such equa-
tions and those resulting from a more rigorous development based on VAT
are certain additional terms. The best way to evaluate the need for these
additional more complex terms is to obtain an exact mathematical solution
and compare the tesults with calculations nsing the VAT equations. This
will clearly display the need for using the more complex VAT mathematical
statements.

Consider a two-phase heterogeneous medium consisting of an isotropic
continuous (solid or fluid) matrix and an isotropic discontinuous phase
(spherical particles or pores). The volume fraction of the matrix, or f~phase,
is {md> =m;=AQ /AQ, and the volume fraction of filler, or s-phase, is
m, =1 —m, = AQ fAQ, where AQ = AQ, + AQ, is the volume of the REV.
The constant properties (phase conductivities, k; and k), stationary (time-
independent) heat conduction differential equations for T, and T, the local
phase temperatures, are -

—Vq, =k VT, =0, —V-q,=kV’T,=
with the fourth (FVth) kind interfacial (f—s) themmal boundary conditions

T, =T, 43, q;lss., = 15, qlss,,-

Here q, = —k, VT, and g, = —k,VT, are the local heat flux vectors, 4S,,
is the interfacial surface and ds, is the unit vector outward to the s-phasc
No internal heat sources are present inside the composite samp]e so the
temperature field is determined by the boundary conditions at the external
surface of the sample. After correct formnlation of these conditions, the
problem is completely stated and has a unique solution.

Two ways to realize a solution to this problem were compared (Travkin
and Kushch {33, 347). The first 1s the conventional way of replacing the
actual composite medium by an equivalent homogeneons medinm with an
clfective thermal conductivity coefficient, k = k_ ({5}, k;, k), assuming one
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knows how to cbtain or calculate it. The exact effective thermal coefficient
was obtained using direct numerical modeling (DNM) based on the math-
ematical theory of globular morphology multiphase fields developed by
Kusheh (see, for example, [35-38]).

Averaging the heat flux, (g}, and temperature, (T}, over the REV yields
{q> = k,;;V{T), and for the stationary case there results

V- (k[ V(T)) = 0. (32)

The boundary conditions for this equation are formulated in the same
manner as for a homogensous medinm.

The second way is to solve the problem using the VAT two-equation,
three-term integrodifferential equations (28) and (30). To evaluate and
compare solutions to these equations with the DNM results, one needs to
know the local solution characteristics, the averaged characteristics over the
both phases in each cell, and, in this case, the additional morphodiffusive
termis.

An infinite homogeneous isotropic medium containing a three-dimen-
sional (3D) array of spherical particles is chosen for analysis. The particles
are arranged so that their centers lie at the nodes of a simple cubic Iattice
with period a. ‘The temperature field in this heterogeneous medium is caused
by a constant heat flux Q, prescribed at the sample boundaries, which,
becanse of the absence of heat sources, leads to the equality of averapged
internal heat flux {g> = Q ‘

When all the particles have the same radii, the result is the triple periodic
structure used widely, beginning from Rayleigh’s work [39], to evaluate the
effective conductivity of particle-reinforced composites.

The composits medinm model consists of the three regions shown in Fig.
3. The half-space lying above the A—A plane bas a volume content of the
disperse phase m,=m,, and for the half-space below the B—B plane
m,=my. To define the problem, let m, > my. The third part is the
composite layer between the plane boundaries A—~A and BB containing N
double periodic lattices of spheres (screens) with changing diameters.

Solutions to the VAT equations (28) and (30) for a composite with
varying volume content of disperse phase with accurate DINM closure of the
micro model VAT integrodifferential terms were obtained implicilly, mean-
ing that each term was calenlated independently using the results of DNM
calculations.

For the one-dimensional case, Eq. (32) becomes

o aT
E (keff —a;) = 0, (21 £ZX ZZ): My = H’IS(Z),

where k,..(m,) 1s the effective conductivity coefficient.

&

.
.
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Fic. 3. Model of two-phase medizm with variable volume fraction of disperse phase.

The normalized solution of the both models (VAT and DINM) for the case
of linearly changing porosity m, = m® + z(m® — m®), where m,(z,) = m{®,
mz,) =m®, z, =0, z, =1, between A—A and B—B and with cffective
conductivity coefficients of ko =0,02, 1, 10, and 10,000, are presented in
Fig. 4. There is practically no difference (less than 107 3) between the
solutions, and what there is is probably because of numerical error accumu-
lation {Travkin and Kushch [347).

Lines 1-5 represent solutions of the one-term equation, respectively,
whereas the points (circles, triangles, eic.) represent the solutions of the VAT
equations with accurate DNM closure of the micro model VAT integrodif-
ferential terms MDD, and MD, for the composite with varying volume
content of disperse phase. Here the number of screens is nine, corresponding
to a refatively small particle phase concentration gradient.

The coincidence of the results of the exact calculation of the two-equation,
three-term conductive-diffusion transport VAT mode! (28) and (30) with the
exact DNM solution and with the one-temperature effective coefficient
model for heterogeneous media with nonconstant spatial morphology
clearly demonstrates the need for using all the terms in the VAT equations.
The need for the morphodiffusive terms in the energy equation is further
demonstrated by noting that their magpitides are all of the same order.

Confirmation of the fact that there is no difference in solutions between
the correct one-term, one-temperature effective diffusivity equation and the
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FiG. 4. Comparison of VAT three-term equation particle temperature (symbols) with the
exact analytical based on the effective conductance coefficient obtained hy exact DNM (solid
lines).

three-terms, two-temperature VAT equations does not mean that it is better
to take for modeling and analysis the effective diffusivity one-term, one-

- temperature equation (see Subsection VI, B and arguments in Sections VII
and VIIT). Among other issues one needs to analyze poals of modeling and
to understand that the good solution of the effective diffusivity one-term
one-temperature equation as it was found and described in the preceding
statements means nothing less than the ground of the exact solution of the
VAT problem, Also, it is important that for the exact (or accurate) solution
of conventional diffusivity equation, the effective coeflicient needs to be
found, and this means in turn that finding the solution of the two-field
problem is imperative and consequently appears to be the major problem.
Meanwhile, this is the problem that was posed just at the beginning as the
original one.

III. Nonlinear and Tarbulent Transport in Porous Media

To a great extent, the analysis of porous media linear transport phenom-
ena are given in the numerous stundies by Whitaker and coanthors; see, for

LT,
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example, {10, 30, 31, 40-46], as well as by studies by Gray and coauthors
[8, 47-307. Our present work is mostly devoted to the description of other
physical fields, along with development of their physical and mathematical
‘models. Still, the connection to linear and partially linear problem state-
ments needs to be outlined.

The linear Stokes equations are

VI =0,
0= —Vp+ uV?V+p,7, (33

and althongh the Stokes equation is adequate for many problems, linear as
well as nonlinear processes will result in different equations and modeling
[eatures, 7

The general averaged form of the transport equations will be developed
for permeable interface boundaries between the phases. Two forms of the
right-hand-side Laplacian term will be considered. First, one can have two
forms of the diffusive flux in gradient form that can be written

VY= pV<Vy, +- | Vs (34)
Q 38w
or
CHVYD ;= p(myV T+ hﬂd Pds. (35)
35

It was pointed out first by Whitaker [42, 43] that these forms allow greater
versatility in addressing particular problems. Using the two averaged forms
of the velocity gradient, (34) and (35), one can cbtain two averaged versions
of the diffusion term in Eq. {33), namely,

~ 1 — -
UV p = pV-(V(md V) + ,uV‘[m J‘ Vda] + fﬁ .st VV-dsj |

(36)

where the production term VV-ds is a tensorial variable, and the version
with fluctuations in the second integral term

- 1 e -
- . i ]
CUVVY)) = uV - ({mdVV) 4 v [_Q .[asw Vds:] +_Q .st VV-ds,

(37)
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Using these two forms of the momentum viscous diffusion term, one can
write two versions of the averaged Stokes equations. The first version is

i

: — ds=0, U=V 38
VY, + 55 _Ls,, U, ds=0, U, (38)

and

1 - ~
0=—-YPr—35 LS pds -+ pV-(V{m)¥)

1 - " = -
i . , 30
+ay |:Aﬂ J‘asw Vds] * AQ J.asw VVidst<mop,g (39

and the -second version is found by using the following relation for the
pressure gradient:

i - - 1 s
—V{prs— AQ LS pds = —{mVp — A0 s pds. (40)

Using the averaging rules developed by Primak et al. [14], Shcherban et
al. {157 and Travkin and Catton [16, 18] facilitated the development of the
momentum equation. By combining equations (37) and (40), one is able to
write the momentum transport equations in the second form with velocity
fluctuations '

. ) :
VO, = (V¥ + 35 | Oeds=o @1
obtained nsing
1 - 1 P
el = - -d . 42
20 s, Vs {V},Vim) + A st U,-ds, 42)

and the momentum equation

0= ~<m>v;7—$ , pds + uV-((mdVP)

. 1 P Ji v —
. . ) 43
+ uv [Aﬂ st I’ds] + AD st VvV Js + (mypg 43

The third version of these equations is almost never used but can be found
in [21].
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A. LAMINAR FLow wiTH CONSTANT COEFFICIENTS

The transport equations for a fluid phase with linear diffusive terms are

aV_y (44)
ax;
Wi, L0 (0), sy
ot dx; Py Ox; dx; \ 9x;
o o d (oD
L +U,—L=p,— (L) +85,, 4
o+ dx; faxj(ax,.) + Ry (46)

Here @ represents any scalar field (for example, concentration C )} that might
be transported into either of the porous medium phases, and the last terms
on the right-hand side of (45) and (46) are source terms. In the solid phase,
the diffusion equation is

ot d [0
=D — == So.. 47
at D dx; (ﬂxj) + Se, “n

The averaged convective operator term in divergence form becomes, after
phase averaging,

a 1 )
<é}: (UJU;)>f = V(U UD = VTUD, + o st v, ds

~ o~ 1 —
= VLU U+ {m){iyi}, ] + Aa J- U;U-ds. - (48)
EL
Decomposition of the first term on the right-hand side of (48) yields
fluctuation types of terms that need to be treated in some way.

The nondivergent version of the averaged convective term in the momen-
tum equation is

" NV . n 1 -
<5_)CJ (UJUI}>I= <m>U;‘VUi+ IJ;‘V<U}>_[+V<ujui>f +A_ﬂf Utl-ds

i
5y

1
1

b o1 .
= (m b 7, .-—U.-mﬁsw Uy ds
VG, 55 | YOS o)
= 25w

The divergent and nondivergent forms of the averaged convective term in
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the diffusion equation are

1 .
VCUP ;= VLCU, + 45 J CU,-ds
J=h

o . 1
= V[{m>CU; + {m){eti} ;] + AG J‘asw CU,-ds

~ o~ 1 - 1 =
= . —C— - d &1, — CU;-ds.
<m> i axic CAQ J;S,., U; 5 -+ V<Cul>f + AQY J;Sw i 3

' (50)

Other averaged versions of this term can be obtained vsing impermeable
interface conditions (see also Whitaker [42] and Plumb and Whitaker [447).
For counstant diffusion coefficient D, the averaged diffusion term becomes

~ -1 D -
(V-(DVC)) ;= DV-V{{m)C) + DV-[—l- j Cds | +-—= J VC-ds,
S _ 5w

AQ AQ
N 51
V-(DVC)), = DY+ ({m>VE) + DV-| - ods |+ 2 ve-d
(V-(DVCY), = DV ((myVE) + [Kﬁ LS tls |+ 5 |, veds
or e

L 1 . D "
D(DVC)), = DAmSVAE 4+ DV-| — | tds|+-= | Ve-ds.
{D-( Yr {my [ A0 ,st & S] A LSW

(53)
Other forms of Eq. (52), using the averaging operator for constant
diffusion coeflicient, constant porosity, and absence of interface surface
permeability and transmittivity, can be found in works by Whitaker [42]
and Plumb and Whitaker [44), as well as by Levec and Carbonell [46].
A similar derivation can be carried out for the momentum equation to
treat cases where Stokes flow is invalid. Two versions of the momentum
equation will result. The equation without the fluctuation terms is

v S | - 1 -
i L -7 - B . VVv-
p,-({m) pr + {mpV-VV A0 J.as,.. V-ds + V{Bby, + A0 st ds)

=~—V((myp) — Flﬂ LS pds + p¥-V({m)>7)

1 - 1] -
V. N _'_
+p [ . L Vds]-l—AQ vav ds-+ Gmpgg. (59
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with the fluctuation diffusion terms it becomes

av T | L " 1 -
.pf(<m) ar + VYV — VZE!_ J.asw Veds + V{05, +Eﬁ . VV ds)
.1 - .
= —{myVp — — Bds + p¥V-{{mdVI)
AQ Jus

l s Ij ) - —_
+ uv [E st m‘s] + AQ J; . VV-ds+ (mop,g. (55)

The steady-state momentum transport equations for systems with imper-
meable interfaces can readily be derived from Eq. (54) and (55). They are

P (YT VT V<003 = —V(myP) ~ 55 | pds + ¥~ V(CmyP)
8

H - -
+AQ . VV-ds + (mdp g, (56)

or

KMV -V V{@BY,) = —<{mHVp) — ﬁ f pds -+ pV-V((m> )
. 25 ]

L = ~
+AQ e VV-ds + (m)p_fg. _ 57

B. NoNLmMEAR FLUID MEDIUM BQUATIONS IN LAMINAR FLow

- To properly account for Newtonian flnid flow phenomena within a
porous medium in a general way, modeling should begin with the Navier—
Stokes equations for variable fluid properties,

av
oy (E 5- V—\?V) = —Vp+ V-[u(VV + (VV*)] + p,5 (58)
p=puV, C, T),

rather than the constant viscosity Navier—Stokes equations. The following
form of the momentum equation will be used in further developments;

oV :
pf(—a? + V-VV) =—=Vp+V-(2uS)+p,/7 (59)

u=u¥,C, 7).
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The negative stress tensor g;; in this equation is
N = —oy;=2uVVYy = 2485, (60)
and the symmetric tensor S is the deformation tensor -

S=(VVy :% (VI + (VI (61)

with (V¥)* being the transposed diad VV.
The homogeneous phase diffusion equations are

o, @b, B . o0,
- —L=—1(1 @ — S 62
o T Uiax, T, W B V) 50 Ser (62)
and
b d i) .
s_ Y 2 . 63
o ax (R’ ix j) + Sa, 63)

Here @, and A are scalar fields and nonlinear diffusion coefficients for
these fields. The averaging procedures for transport equation convective
terms were established eailier. The averaged nonlinear diffusion term yields

(V(DVC)y; =V-((myDVC) + vl[ﬁ L j Ec—fs:i
" AQ 8. -

. 1 ~
+V-({DVE),) + — DVC-ds. (64)
AQ Jag,
- The other version of the diffusive terms with the full value of concentration
on the intetface surface is

V-(DVC)y, = V-(DVKmC)) + v-[ﬁi J cEs]
AQ 45

~ 1 -
+V-({DVE);} + — DVC-ds, {65)
AL los,,
General forms of the nonlinear transport equations can be derived for
impermeable and permeable interface surfaces. The averaged momentum
diffusion term is

d

} i -

= V-2({mdis -+ (m){ﬁ§}f) + —Az!—) J:as uS-ds.  (66)
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The general nonlinear averaged momentum equation for a porous medium
is

' ov | . 1 -
— VV —V-— . B — V-d
Iy ((m} o + {my V-V VAD. J;sw V-ds + V{0i), + G J:asw |4 s)
- 1 - e LA
= —Vmp) — 55 pds + V- 2A{mpjs + {mH{iS}))
a5

2 -~
. a. )
T |, A8 s+ mdpgg (6D

The steady-state momentum transport equations for systems with imper-
meable interfaces follows from Eq. (67), '

pr((mYV-VV + V(DY)

a5

~ V() j pds + V-2Cm>aS + (my{AS)

H — -
+ — S-ds+ {m . 68
AQLSWH {mdp,;g (68)

The averaged nonlinear mass transport equation in porous medinm
follows

aC v~ C - 1 -
ld | i N . s - )
{m p + (myUNVC, 20 | s, Uprds + V0, + AD st CU,-ds

= V- (DV{(m)E) + V-["'% J;s.., ca's}

R, 1 -

+ V- ({DVEy) + — j DVC-ds + {m)§,,. (69)
AQ Jas,

A few simpler transport equations that can be readily used while main-

taining fundamental relationships in heterogeneous medium {ransport are

given by Travkin and Catton [21].

C. Porous MeEDpuM TURBULENT VAT EQUATIONS

Turbulent transport processes in highly structured or porous media are
of great importance because of the larpe variety of heat- and mass-exchange
equipment used in modern technology. These include heterogeneous media
for heat exchangers and grain layers, packed columns, and reactors. In all
cases there occurs a jet or stalled flow of fluids in channels or around the
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obstacles. There are, however, few theoretical developments for fiow and
heat exchange in channels of complex configuration or when flowing around
nonhomogeneous bodies with randomly vared parameters. The advanced
forms of laminar transport equations in porous media were developed in a
paper by Crapiste et al. [41]. For turbulent transport in heterogencous
media, there are few modeling approaches and their theoretical basis and
final modeling equations differ.

The lack of & sound theoretical basis affecis the development of math-
ematical models for turbulent transport in the complex geometrical environ-
ments found in nuclear reactors subchannels where rod-bundle geometries
are considered to be formed by subchannels. Processes in each subchannel
are calculated separately (see Teyssedou et al. [51]). The equations used in
this work has often been obtained from two-phase transport modeling
equations [ 52] with heterogeneity of spacial phase distributions neglected in
the bulk. Three-dimensional two-fluid flow eqnations were obtained by Ishii
[52] using a statistical averaging method. In his development, he essentially
neglected nonlinear phenomena and took the flux forms of the diffusive
terms to avoid averaging of the second power differential operators. Ishii
and Mishima [53] averaged a two-fluid momentum equation of the form

a“x Pl

Bt + V- (pev v = —o Vp, + Voo (T + 1)

+ o prg + ol + My, — Va1, (70)

where g, is the local void fraction, t; is the mean interfacial shear stress,
_is the turbulent stress for the kth phase, T is the averaged viscous stress for
" the kth phase, T, is the mass generation, and M, is the generalized
interfacial drag. Using the area average in the second time averaging

procedure, Ishii and Mishima [53] introduced a distribution of parameters

to take into consideration the nonlinearity of convective ierm averaging.
This approach cannot strictly 1ake into account the stochastic character of
various kinds of spatial phase distributions. The equations used by Lahey
and Lopez de Bertodano [54] and Lopez de Bertodano et al. [55] are very
similar, with the momentum equation being

Du —_—
0Py ;)tjk = —o,Vp + Vo [, Vuy — p (tuin)]

— g+ M, — M, — 1 Vo + (py, — PV (71)

Here the index i denotes interfacial phenomena and M, is the volumetric
wall force on phase k. Additional terms in Eq. (70) and (71) are uwsually
based on separate micro modeling eflorts and experimental data.

T gl R s
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One of the more detailed derivations of the two-phase flow governing
equaiions by Lahey and Drew [56] is based on a volume averaging
methodology. Among the problems was that the anthors developed their
own volume averaging technique without consideration of theoretical ad-
vancements developed by Whitaker and colleagues [10, 42] and Gray et al.
[8] for laminar and half-linear transport equations. The most important
weaknesses are the lack of nonlinear terms (apart from the convection
terms) that naturally arise and the nonexistence of interphase fluctnations.

Zhang and Prosperetti [37] derived averaged equations for the motion of
equal-sized rigid spheres suspended in a potential flow using an equation for
the probability distribution. They used the small particle dilute limit
approximation to “close” the momentum eqgnations. After approximate
resolution of the continuous phase fluctvation tensor M,, the vector
Ap{x, 1), and the fluctuating particle volume flux tensor, M, they recog-
nized that (p. 199) “Closure of the system requires an expression for the
fluctuating particle volume flux tensor My.... This missing information
cannot be supplied internally by the theory without a specification of the
miitial conditions imposed on the particle probability distribution.” They
also considered the case of “finite volume fractions for the linear problem™
where the problem equations were formulated for inviscid and unconvec-
tional media. The development by Zhang and Prosperetti [57] is a good
example of the correct application of ensemble averaging. The equations
they derive compare exactly with those derived from rgorous volime
averaging theory (VAT) [24].

Transport phenomena in tube bundles of nuclear reactors and heat
exchangers can be modeled by treating them as porous media [58]. The
two-dimensional momentum equations for a constant porosity distribution
usually have the form [59]

aU av -
6}1 (72}
qU* UV 1ap i
dx + dy = P Ax + vef_fv U— A IV[ 19} (73)
ouv o _Lor VIV — AV 0
x| ay - pay DTV VAW (74)

where the physical quantities are written as averaged values and the solid
phase effects are included in two coefficients of bulk resistance, 4_ and A,

and an effective eddy viscosity, v,,,, that is not equal to the turbulent eddy
viscosity. These kinds of equalions were not designed to deal with non-
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linearities induced by the physics of the problem and the medium variable
porosity or to take into account local inhomogeneities,

Some of the more interesting applications of turbulent transport in
heterogeneons media are to agrometeorology, urban planning, and air
pollution, The first significant papers on momentum and pollutant diffusion
in urban environment treated as a iwo-phase medium were those by Popov
[60, 61]. In these investigations, an urban porosity function was defined
based on statistical averaging ol a characteristic function #{x, ¥, z) for ihe
surface roughness that is equal to zero inside of buildings and other
struoctures and equal to unity in an outdoor space. The turbulent diffusion
equation for an urban roughness porous medium after ensemble averaging
is

om(x)XC,» 4.2

5 g (TG

9{Cy>
dx

i = g 3 R a
= {BYEN> ~ vien> + 5= (Dn

=1,23,4...
axi )J R 3 £ s 2

i

(75)

where { > means porous volume ensemble averaging, and m{x,;) is porosity.
Ciosure of the two “morphological” terms, the first and the second terms on
the right-hand side, was obtained uging a Boussinesque analogy,

C>
fx;

il d —
ax, (BYEND + o, {tice> = —K; (76)

A descriptive analysis of the deviation variables (8}, (€.} and the effective
diffusion coefficient K, was not given. In many studies of meteorology and
agronomy, the only modeling of the increase in the volume drag resistance
is by addition of a nonlinear term as done by Yamada [62],

80  _ 18P 8 —— -
E=ka_—;E+E(wuw) (1 — m)e, SN0 |0 (77)
v - 19P 2

a‘:' MﬂU—EEJ:-i_& —v'w) - (1 — me, S(Z)|V 1V,

where (1 —m,) is the fraction of the earih surface occupied by forest, m, is
the area porosity due to a tree volume, and f, is a Coriolis parameter.

The averaging technique used by Raupach and Shaw [63] to obtain a
turbulent transport equation for a two-phase medium of agro- and forest
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cultures is a plain surface 21D averaging procedure where the averaged
function is defined by

1
AQ,,
with AQ, . being the area within the volume AQ, occupied by air. Raupach

et al. [64] and Coppin et al. [65] assumed that the dispersive covariances
were unimpaortant,

Sopr= Lﬂ fdw, (78)

(ﬁ’i’ﬁ},>pf: . (79)

where &Iy is a fluctvation value within the canopy and @ # . The
contnbution of these covariances was found by Raupach et al. [64] to be
small in the region just above the canopy from experiments with a regular
rough morphology. This finding has been explained by Scherban et al. [15],
Primak et al. [14], and Travkin and Catton [16, 20} for regular porous
(roughness) morphology. Covariances are, however, the result of irregular
or random two-phase media. When the surface averaging used by Raupach
and Shaw [64] is used instead of volume averaging, especially in the case of
nonisctropic media, the neglect of one of the dimensions in the averaging
process results in an incorrect value. This result should be called a 2D
averaging procedure, parlicularly when 3D averaging procedures are re- -
placed by 2D for nonisotropic urban tough layer (URL) when developing
averaged transport eguations.

Raupach et al. [64-66] later introduced a true volume averaging pro-
cedure within an air volume Af), that yielded the averaged equation for
momentum conservation

6ﬁi 34 a = 1 a 5 a 1 5
6[ vi-U:,;,;;J(U,)—— —E5;P+a—)€i{—uiuj}f+VA[’}
¥ 8 - =
— = ir-d
TR Jue o,
9 {wi; ] Pds, ,j=1-3, (80
——{Wul}, —— =1-—-3
axj I r pIAQf a5, % L] ( )

where 85,, is interfacial area. Development of this equation is based on
intrinsic averaged values of { }, or U, whereas averages of vector field
variables over the entire REV are more correct (Kheifets and Neimark
£111). Raupach er al. [64] next simplified all the closure requirements by
developing a bulk overall drag coefficient. The second, third, and fifth terms
on the right-hand side of Eq. (80) are represented by a common drag

resistance term. For a stationary fully developed boundary layer, they write
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a] —= au 1 =

2 [{“'W'}f{”" L T 52] - -?:Cd,SNUZ, 81)
where C,, is an element drag coefficient and S, is an element area
density — frontal area per unit volume.

A wide range of flow regimes is reported in papers by Fand et al [67]
and Dybbs and Edwards [68]. The latter work revealed that there were four
regimes for regular spherical packing, and that only when the Reynolds
number based on pore diameter, Re,,, exceeded 350 could the flow regime
be considered to be turbulent flow. The Fand ef al. [67] investigation of a
randomnly packed porous medium made up of single size spheres showed
that the fully developed turbulent regime occurs when Re, > 120, wherc Re,
is particle Reynolds number.

Volume averaging procedures were used by Masuoka and Takatsu [69]
to dedve their volume-averaged turbulent transport equations. As in numer-
ous other studies of mnltiphase transport, the major difficulties of averaging
the terms on the right-hand side were overcome by using assumed closure
models for the stress components. As a result, the averaged turbulent
momentiim equation, for example, has conventional additional resistance
terms such as the averaged momentum eguation developed by Vafai and
Tien [70] for laminar regime transport in porous medium. A major
assumption is the linearity of the fluctuation terms obtained, for example,
by neglect of additional terms in the momentum equation.

A meaningful experimental study by Howle &t al. [71] confirmed the
importance of the role of randomness in the enhancement of transport
processes. The results show the very distinct patterns ol flow and heat
. transfer for two cases of regular and nonuniform 2D structured nonorthog-
onal porous media. Their experimental results clearly demonstrate the
influence of nonuniformity of the porous structure on the enhancement of
heat transfer.

D. DevELoPMENT OF TURBULENT TRANSPORT MODELS
m HiGHLY PoroOUS MEDIA

Fluid flow in a porous layer or medium can be characterized by several
modes. Let us single out from among them the three modes found in a
highly porous media. The first is flow around isolated ostacle elements, or
inside an isolated pore. The second is interaction of traces or a hyperturbu-
lent mode. The third is fluid flow between obstacles or inside a blocked
interconnected swarm of channels (filiration made). The models developed
by Scherban et al. [15], Pomak et al. [14], and Travkin and Catton [16-21]
are primarily for nonlinear laminar filtration and hyperturbulent modes in

O S N
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nonlingar transport.
~ Specific features of flows in the channels of filtered media include the
following:

1. Increased drag due to microroughness on the channel beundary
surfaces

2. Gravity effects

3. Free convection effects

4. The effects of secondary flows of the second kind and curved stream-
lines

5. Large-scale vortex effects

6. The anisotropic nature of turbulent transfer and resulting anisotropy
of turbulent viscosity

It is well known that in spacial boundary flows, an important role is
played by the gradients of normal Reynolds stresses and that this is the case
for flows in porous medium channels as well. As a rule, flow symmetry is
not observed in these channels. Therefore, in channel tnrbulence models, the
shear components of the Reynolds stress tensors have a decisive effect on
the flow characteristics. At present, however, turbulence models that are less
than second-order can not be successfully employed for simulating such
flows (Rodi [72], Lumiley [73], and Shvab and Bezprozvannykh [74]).

Derivation of the equations of turbulent flow and diffusion in a highly
porous medium duoring the filtration mode is based on the theory of
averaging of the turbulent transfer equation in the liguid phase and the
transfer equations in the solid phase of a heterogeneous medium (Prlmak et
al. [14] and Scherban et al. {15]) over a specified REV.

The initial turbuleni transport equation set for the first level of the
hierarchy, microelement, or pore, was taken 1o be of the form (see, for
example, Rodi [72] and Patel et al. [75])

80, 80, 1 8p 8 00, —

a x| o, i ox ("793?; “"”f)+S”-' )
b, ~ ob, 0 [ oF .
=r i G i ) Widia#t §

&+ ik, ox ( ! Bx, “‘”)+S“‘f ®3)
Wi_yg 84
6JC{ M ( )

Here ®, and its fluctuation represent any scalar field that might be
transporied into either of the porous medium phases, and the last terms on
the right-hand side of (82) and (83) are source terms.
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Next we introduce free stream turbulence into the hierarchy Let us
represent the turbulent values as

U=U+w=0,+U, +u+u (85}

F T -

=0+ i

where the index k stands for the turbulent components independent of
inhomogeneities of dimensions and properties of the multitude of porous
medinm channels {pores), and r stands for coniributions due to the porous
medium inhomogeneity. Being independent of the dimensions and proper-
ties of the inhomogeneities of the porous medium configurations, sections,
and boundary surfaces does not mean that the distribution of values of U,
and 14 are altogether independent of the distance to the wall, pressure
distribution, etc. Thus, the values U, or u; stand for the values generally
accepted in the turbulence theory, that is, when a plane sorface is referred
to, these values are those of a classical turbulent boundary layer. When a
round-section channel is involved, and even if the cross-section of this
channel is not round, but without disturbing nonhomogeneities in the
section, then the characteristics of this regular sections (and flow) may be
considered to be those that counld be marked with index k& Hence, if a
channel in a porous medium can be approximately by superposition of
smooth regular (of regular shape) channels, it is possible 1o give such a flow
its characteristics and designated them with the index k, which stands for
the basic (canomnical} values of the turbulent quantities.

Triple decomposition techniques have been used in papers by Brereton
and Kodal [76] and Bisset et al. [77], among others. The latter utilized
triple decomposition, conditional averaging, and double averaging to ana-
lyze the structure of large-scale organized motion -over the rough plate.

Tt should be noted that there are problems where 7, and uj, can be found
~ from known theoretical or experimental expressions (correlations) where the
definitions of U7, and u} are equivalent to the solution of an independent
problem (for example, turbulent flow in a curved channel). The same thing

can be said about flow around a separate obstacle located on a plain surface.
In this casc one can wrile

O=U=0,+0, o=u. (86)

The term o) = u appears if the flow is through a nonuniform array of
obstacles. If all the obstacles are the same and ordered, then # can be taken
equal to 0. Naturally, the term uj in this particular case does not equal the
fluctuation vector u;, over a smooth, plain surface.
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The [ollowing hypothesis ahout the additive components is developed to
correct the foregoing deficiencies:

=

+
k+ﬁ,—ﬁk—kﬁ,, = u
() =0, {iij,={m},=0 (87)

1t should be poted that solutions to the equations for the turbulent
characleristics may be influenced by external parameters of the problem,
namely, by the coefficients and boundary conditions, which themselv_:;s can
cacry information about porous medium morphological features. The adop-
tion of a hypothesis about the additive components of functions represen-
ting turbulent filtration facilitates the problem of averaging the equations
for the Reynolds stresses and covariations of fluctuations (flows) in pores
over the REV.

After averaging the basic initial set of turbulent transpott equations over
the REV and using the averaging formalism developed in the works by
Primak et al. [14], Shcherban et al. [15], and Primak and Travkin [78], one
obtains equations for mass conservation,

1 _
— | O,-ds=0, 88
A0 ;rds (88)

T Sie

={U+ U}, +u, w=1%

T
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— (1.

axi < [)f +
for turbulent filtration (with molecular viscosity terms neglected for
simplicity),

(= () BT
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1
_ s o —— P
pJ-AQJ;Swp STAO Jus, U0 ds
1

—1a as“m-?r‘sumﬁu,, i, j=1-3, (89)

‘and for scalar diffusion (with molecular diffusivity terms neglected),

{my =

d = =~
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0 .[.asw ;@ ds + {mySy,, i=1-3 (o0)
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Many details and possible variants of the preceding equations with
tensorial lerms are found in Primak et al. [14], Schecban et al. [15], and
Travkin and Catton [16, 21]. Using an approximation to K-theory in an
elementary channel (pore), the equation for turbulent diffusion of nth species
takes the following more complex form after being averaged:

(m)

8C. = .
2+ (PN VC, = =V,

- = ~ 1 _
+ V(R VKm>C) + V- [Kc <G .[ . C,,ds]

DA 1 -
: ¢ — | kvC,-4
+ V- {{k Ve ) + A0 st NVC,-ds

C -1 - .
n s —— 0. -d 5.,
+AQ Ls, i.-ds A0 J.asw C, U, -ds-+ {m)5,

n=1,2,34.... (91

In the more general case, the momentum flux integrals on the right-hand
sides of Eq. (89) through (91) do not equal zero, since there could be
penetration through the phase transition boundary changing the boundary
conditions in the microelement to allow for heat and mass exchange through
the interface surface as the values of velocity, concentrations, and tempera-
ture at 85, do not equal zero (see also Crapiste et al. [417). The first tenmn
on the right-hand side of Bq. (91) is the divergence of the REV averaged
product of velocity fluctuations and admixture concentration caused by
random morphological properties of the medium being penetrated and is
responsible for morphoconvectional dispersion of admixture in this particu-
lar porous medinm. The third term on the right-hand side of Eq. (91) can
be associated with the notion of morphodiffusive dispersion of a substance
or heat in a randomly nonhomogeneous medinm. The term with S, may also
reflect, specifically, the impact of microroughness from the previous level of
the simulation hierarchy. The importance of accounting for this roughness
has been demonstrated by many studies. The remaining step is to account
for the microroughness characteristics of the previous level.

One-dimensional mathematical statements will be used in what follows
for simplicity. Admission of specific types of medium irregularity or random-
ness requires that complicated additional expressions be inclnded in the
generalized governing equations. Treatment of these additional terms be-
comes a crucial step onee the poverning averaged equations are written. An
altempt fo implement some basic departures from a porous medium with
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stricily regular morphology descriptions into a method for evaluation of
some of the less tractable, additional terms is explained next. _

The 1D momentum equation with terms representing a detailed descrip-
tion of the medium morphology is depicted as

2 N atn\ a8 [/ aﬁ> a aa
_— i K — {{—u1l
o <<”‘>(K"’ +v) Bx) T (< mix /) Bx (C—titdr)
~ a0 1 o0 -
au L K A
5xJ- AQ) J\a‘gw ( m * V) a_xll- $

= 1 4 -
st pds + 2, 0% {{m)p)

1

+ pJ_AQ

= 20
= {mt-—+ Un S, (%) +
i

15 | g pe R, 6D
prAQ Jos, py Ox
where K, ig the turbulent eddy viscosity, and % is the square friction
velocity at the upper boundary of surface roughness layer h, averaged over
interface surface S,,. )

General statements for energy tramsport in a porous medium require
two-temperature treatments. Travkin et al. [19, 26] showed that the proper
form for the turbulent heat transfer equation in the fluid phase using
one-equation K-theory closure with primarily 1D convective heat transfer 1s

o _ oF o (/. T,
—— = 4. Ay K Bx
oS U ox  dx [<m>(KT + k) dx + dx T ox 1 }
) - 8 [(Kr+ky) Fd
+Cpppy 7 (U= Ty} + 52 [M%E—L st des]

L .y .75, 03
+AQ st (Kr+ky) e S, (93)

whereas in the neighboring solid phase, the corresponding equation is

3 AL, 0 (/o 2%,

ﬁ {K T} o~ — 1 57; -
— | s d s K ,-—-ds,. 94
" Ox [ AQ st % Sl:| * AQ J‘ﬁsw = dx; . &)

The generalized longitudinal 1D mass transport equation in the floid
phase, including description of potential morphofluctuation influence, for a
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medium morphology with only 1D foctuations is written

p " o€ 8 (/. aC,
e [(m)(Kc + D) “g;] +a (<Kr: ‘5;>f)

2 . ? [(E:+ D) -
-E-—a; ((m){—cfu}f) +a—x|:————cAg L - cfds]

1 oC, = ~ aC,

- Zrr. — s g
+55 Ls,, (Kt D) ZE-ds+ (mdSo = emyU L, (99)

whereas the corresponding nonlinear equation for the solid phase is

il a{cs}s. d D ae’
o ((1 — <m)D.) — 57 )+ % (<DS 5§>)

a {Ds}s ~ T 1 ac-'.—
+ a [ AQ J-asw C:dsl] + E J;SW Ds Ex—i dSl. (96}

E. CLOSURE THEORIES AND APPROACHRS FOR TRANSPORT
N PorOUS MEDIA

Closure theories for transport equations in heterogeneous media have
been the primary measure of advancement and for measuring success in
research on trl’mspnrt'in porous media. It is believed that the only way to
achieve substantial gains is to maintain the connection between porous
medium morphology and the rigorouns formulation of mathematical equa-
tions for transport. There are only two well-known types of porous media
“morphologies for which researchers have had major successes. But even for
these morphologies, namely straight parallel pores and equal-size spherical
inclusions, hot enough evidence js available to state that the closure
problems for them are “closed.”

One of the few existing studies of closure for VAT type equations is by
Hsu and Cheng [79, 80]. They used a one-temperature averaged equation
[Equation (40a) in Hsu and Cheng [807) without the morphodiffusive term

Vo[, = K)T(=V<{m))] = V- [(k, — k)T(Vm))].

The reasonming often applied to the morphoconvective term closure
praoblem in averaged scalar and momentom transport equations is that the

terms needing closure may be negligible. The basis for this reasoning is (see
Kheifets and Neimark [117)

e |VCldy, and J=DIVC| so V(&[> ~ D{VC®), ‘2_"
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where | is the characteristic length associated with averaging volume {(see,
for example, the work of Lehner [81] and others) and d,, the mean diameter
of pores in a REV. It is not obvious that the length scale, 4, taken -for .the
approximation of & follows from use of | as a scale for the second derivative.
Furthermore, assuming that the variable o be averaged over the REV
changes very slowly over the REV does not mean that it changes very slowly
in the neighborhood of the primary REV. ) _

Various closure attempts for heterogeneous medium transport equations
resulted in various final equations. One needs to know what these equations
are all about. Treatment of the one-dimensional heat conduction equation
with a stochastic functien for the thermal diffusivity in a paper by Fox and
Barakat [82] yielded a spatially fourth-order partial dilferential equation to
be solved. Gelhar et al. [83], after having eliminated the second-order terms
in the species conservation equation for a stochastic media, were able to
develop an interesting procedure for deriving a mean concenliratim} trans-
port equation. The equation form includes an infinite series of derivatives
on the right-hand side of the equation. Analysis of this equation allows the
derivation of the final form of the mass fransport equation,

ac* ac* arcx  _ #PCH aC*

o T U e =Wt adl 55— Bams - BU 5

where the most important term is the second term on the right-hand side. .
In the derivation of this equation, the stochastic character of the existing
assigned fields of velocity, concentration, and dispersion coefficients were
assumed.

A simple form of the advective diffusion equation with constant diffusion
coefficients was developed without sorption eflects by Tang et al. [841]:

Im>C
ot

They transformed the equation with the help of ensemble averaging into a
stochastic transport equation,

NEE - - 2C*
Ampc” + OAFVC* = DV -({mOVC*) + {mppy e B’
x; 0

+ <y V- VO = DV - ({mpVC).

ot

where the tensor of the ensemble dispersion coefficient is a correlation
function denoted by

@R
PR

with {ti}* being the emsemble averaged velocity, The additional term,
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reflecting the influence of the stochastic or inhomogencous nature of the
spatial velocity and concentration fluctuations in the ensemble averaged
stochastic equation developed by Tang et al. [84], has the dispersivity
coefficient fully dependent on the velocity fiuctuations. As can be seen by
this equation, the effect of concentration fluctuations was eliminated.

Torquato and coauthors (see, for example, Torquato er al. [85], Miller
and Torguato [86], Kim and Torquato [87]) have been developing means
to characterize the various mathematical dependencies of a composite
medium microstructure in a statistically homogeneous medium. Some of the
quantities considered by Torquato are useful in obtaining resolution o
certain closure problems for VAT developed mathematical models of
globular morphologies. In particular, the different near-neighbor distance
distribution density functions deserve special mention (Lu and Torguato
[88], Torquato et al. [85]).

Carbonell and Whitaker [89] combined the methods of volume averaging
and the morphology approach to specify the dispersion fensor for the
problem of convective diffusion for cases where there is no reaction or
adsorption on the solid phase surface, '

ac
—~D—=0, xed§,,
an
and considered a constant diffusion coelficient and constant porosity {mj,
which greatly simplifies the closure problems. They expressed the spatial
deviation fanction as '

¢=f(r) VT,
where ? is a vector function of position in the fluid phase Averaged
equations of convective diffusion are the same as the convective heat transfer
equation given by Levec and Carbonell [46] with the exclusion of flux
surface integral term. The closure technigue used in their paper is analogous

. to a torbulence theory scheme, helping them to derive the closure equation

for the spatial deviation function in the form of a partial differential
equation,

V+ (V4 PWF =DV, —7-Vf=m %ecds,.

Omne should note that the spatial deviation functions defined for a periodic
medium are periodic themselves.
Nozad et al [40] suggested that the same closure scheme be used to

represent the fluctuation terms T, and 'T, for a one-temperature model by
using

=TT +¢, T=gWT>+¢
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for a transient heat conduction problem with constant coefficients in a
two-phase system (stationary). Partial differential equations for f, G, ¥, and
£ are found. They obtained excelient predictions of the effective thermal
conductivity for conductivity ratios k = k,/k, < 100. o

Carbonell {90] attempted to obtain an averaged convective—d:ifusgon
equation for a straight tube morphological model and obtained an equation
with three different concentration variables. This demonstrates that‘the
averaging procedures, taken too literally, can result in incorrect expressions
or conciusions.

A common form of the averaged governing equations for clnsq_re of
multiphase laminar transport in porous media was obtained by Crapiste et
al. [41]. They developed a closure approach that led to a complex int;gro-
differential equation for the spatial deviations of a substance in the void or
fiuid phase volume of the macro REV. This means that solving the
boundary value problem for spatial concentration fluctuations, for example,
requires that one obtain a solution to second-order partial differential or
coupled integro differential equations in a real complex geometric volume
within the porous medium,

For a heterogeneous porous medium, this means that the coupled
integrodifferential equation sets for the averaged spatial deviation variables
must be sobved for at least two scales. For averaged variables the scales are
the external scale or L domain, and for the spatial deviations it is the volume
of the fiuid phase considered at the local (pore) scale. This presents a great
challenge and has not yet been resolved by a real mathematical gtatement.

To close the reaction-diffusion problem Crapiste et al. [41] made a series
of assumptions: (1) the diffusion coefficient I and the first-order reaction
rate coefficient k, are constant; (2) diffusion is linear in the solid part of the

-porous medium, {3) the spatial concentration [uctuation is linearly depend-

ent on the gradient of the intrinsic averaged concenfration and the averagt?d
concentration itself, (4) the intrinsic averaged concentration and solid
surface averaged concentration are equal, (5) the restriction

-Iffi‘f « 1
D

should be satisfied: and (6) spatial fluctuations of the intrinsic concentration
and the surface concentration fluctuations are equal. The fourth and sixth
assumptions are equivalent to an equality of surface and intrinsic concen-
trations, which means that the adsorption mechanisms are taken to be
volumetric phenomena.

In our previous efforts we have obtained some results for both morphol-
ogies and demonstrated the strength of morphological closnre procedures.





