


←→
S = βC (kσCl+ kpCl I) +

�
1 +

a2

14
∇2
�
(nts) +∇ · (nss) +∇∇ : (nrs)−

−a
2

10
n

�
∇A+ (∇A)T − 2

3
I (∇ ·A)

�
+ ..., (76),

and antisymmetric component
←→
A P is

←→
A P ji = �ijk

1

2

n] dSr

|r|=a

(σC · n)× r− 1
2
∇ ·

n] dSr

|r|=a

r ((σC · n)× r)

 +

+
1

2
∇∇ :

n] dSr

|r|=a

rr ((σC · n)× r)


+ ...., (78),

and "the isotropic part of the viscous stress is"

qm =
a2

5
∂k (nA

∗
k)−

a2

14
∂k∂l (nt

s
kl) +

a2

15
n∇ ·A− ∂k

�
nsi

kmm

�− ∂l∂k

�
nsi

kmm

�
, (79).

On page 1417 they give the final momentum equation for the continuous phase,

ρCβC

∂

∂t
(kuCl) + ρCβC kuCl ·∇kuCl = −βC∇ · (−pmI+ΣC)βDf+

+ρD∇ · (βCMC)− βC∇ψC +
a2

10
[(∇n)× (∇×A) + n∇ (∇ ·A)] + ..., (126), (18)

where the kinematic fluctuations induced stress tensor MC is given by

MC = kuCl kuCl − kuCuCl , (125),

and where the continuous phase viscous contribution to the mixture stress ΣC is

ΣC = −qmI+
←→
S +
←→
A P
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where qm is the isotropic part of the viscous stress (which in turn is the another increbibly

complicated expression (see 79)),
←→
S − (equ 78) and ←→A P − (equ 77) are even more complicated

expressions for the symmetric and antisymmetric components of the stress tensor; and f is

f =
1

ν
A−∇· (−pmI+ΣC) , (123).

If one substitutes these and other expressions into the final momentum equation, the following

results:

ρCβC

∂

∂t
(kuCl) + ρCβC kuCl ·∇kuCl = −βC∇ · [− (pm + qm) I+

+βC (kσCl+ kpCl I) +
�
1 +

a2

14
∇2
�
(nts) +∇ · (nss) +∇∇ : (nrs)−

−a
2

10
n

∇] dSr

|r|=a

σC (x+ r|x,N − 1) · n +

+

∇] dSr

|r|=a

σC (x+ r|x,N − 1) · n


T

−

− 2
3
I

∇ · ] dSr

|r|=a

σC (x+ r|x,N − 1) · n


+

+�ijk
1

2

n] dSr

|r|=a

(σC · n)× r− 1
2
∇ ·

n] dSr

|r|=a

r ((σC · n)× r)

 +

+
1

2
∇∇ :

n] dSr

|r|=a

rr ((σC · n)× r)



 ∗

∗

βD

1

ν

]
dSr

|r|=a

σC (x+ r|x,N − 1) · n− βD [∇· (− (pm+qm) I+ +
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+βC (kσCl+ kpCl I) +
�
1 +

a2

14
∇2
�
(nts) +∇ · (nss) +∇∇ : (nrs)−

−a
2

10
n

∇] dSr

|r|=a

σC (x+ r|x,N − 1) · n +

+

∇] dSr

|r|=a

σC (x+ r|x,N − 1) · n


T

−

− 2
3
I

∇ · ] dSr

|r|=a

σC (x+ r|x,N − 1) · n


+

+�ijk
1

2

n] dSr

|r|=a

(σC · n)× r− 1
2
∇ ·

n] dSr

|r|=a

r ((σC · n)× r)

 +

+
1

2
∇∇ :

n] dSr

|r|=a

rr ((σC · n)× r)





+

+ρD∇ · (βC kuCl kuCl − kuCuCl)− βC∇ψC +

+
a2

10

(∇n)×
∇× ] dSr

|r|=a

σC (x+ r|x,N − 1) · n

 +

+ n∇

∇ · ] dSr

|r|=a

σC (x+ r|x,N − 1) · n


+ ....

where all the tensors present as an another challenge to overcome.

It s hould b e noted that thes e complicated express ions s till do not have a term r efl ec t i ng the

velocity of the interface surface to reflect the movement and change of the relative position of the

interface surface. Nor do they have a term with interface velocity-production, 1
∆Ω

]
∂Sw

UCjUCi ·
→
ds

.

Further, the right hand side does not have terms reflecting processes ”on” and ”along” the

interface s urface. These terms are absent (altho ugh p res e nt in the VAT mo dels ) b ecause t he author,
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and many other in the two-phase flow field, do not perform the double averaging of the right

hand s ide tensorial op e rators . This m ean s that these res ults (i n c urrent "......") an d others by

Prosperetti and co-authors are the consequences of the perturbation expansion of the stress tensor

and will remain so unless the double averaging of it is somehow (maybe not possible) incorporated

into the ensemble averaging methodology. It is not surprising that the only method of closure

they turn to - is the Direct Numerical Simulation of the initial lower level (scale) homogeneous

equations.

Some Sp e cific C o mments

On "......" stated - "Our wor k s tarts f rom t he premise that t o d ay, f or the

first time, the detailed information necessary for the development of better models is available

from direct numerical simulation." This statement is incorrect - there are other methods in closely

related fields that have produced exact numerical results and information to improve heterogeneous

modeling. Further, the governing equations developed by Prosperetti are incomplete and have

deficiencies.

On "...." - "It s hould b e noted that, p ri or to this work, n o t echni que e xi sted for

the rigorous calculation of ensemble averages of spatially non-uniform systems," This is incorrect,

seve ral other researchers (Whitake r, Quintar, Travkin a nd others) have d evelop ed and used "rig-

orous calculations" of heterogeneous systems. It is further stated that - "closure laws are derived

in the form of functional relations that are, at least formally, problem - independent,".

The general approach to closure proposed by Prosperetti is to declare up-front a model for

closure and then to follow the results of numerical simulation to obtain the coeffcients in the

closur e mo del. On p age "..." it is stated - "The si multaneous c onsiderati on of the c losure relations

as well as to validate the closure itself ...". For example, on page 6 the relationship given for the

closure of the stress tensor
←→
S is

14



←→
S = 2µeffEm + 2µ∆E∆ + 2µ∇E∇,

where the three effective viscosities are just "postulated". This method might supress the physical

and mathematical basics of the underlaying phenomena in favor of model convenience.

On page "...." there i s t he statement - "In ave raged-equations mo dels of t he "two- fluid" typ e ,

the particles are described in terms of the local volume fraction βD...” This supposition is a

simplification of a known situation and leads naturally to the conclusion that - "the very foundation

of the two-fluid modeling carried out in the last several decades fails."

On the p age "...." - "it is meaningful, for example, t o simulate s ituations in which the i mp osed

forces, torques, velocities, and angular velocities are not equal but are selected from assigned

probability distributions." It appears as if Prosperetti wants to assign the major properties of a

particulate flow to each particle. This will eliminate the connection between physically justified

parameters (meaning those found or simulated with accepted modeling equations) and calculated

responses of the particular problem studied. The result could be very different from a solution

based on calculated parameters.

It is worth n oting t hat, at pres ent, the VAT , in cont rast to ensemble averaging, is develop ed to

a level where allmost all the restrictions cited earlier and enumerated by Buyevich, Drew and

Lahey, Prosp e rett i and in other works can b e t reated in the VAT through the prop er mathematical

procedures. VAT has been applied to transport phenomena in heterogeneous media with the

following features:

1) multi-scaled media;

2) media with non-linear physical characteristics - including high Reynolds numbers and even

turbulence;

3) polydisperse morphologies;

4) materials with phase anisotropy;

5) media with non-constant or field dependent phase properties;
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6) transient problems;

7) presence of imperfect interface surfaces;

8) presence of the internal (mostly at the interface) physico-chemical phenomena;

It is too bad that many of the efforts in the two-phase flow area have given the method a

poor image. Two phase flow is a complicated arena to work in and results were needed and often

obtained at the expense of rigor or even good physics. This is an area that needs the close attention

of someone like Prof Prosperetti who is a brilliant mathematician. What he has done heretofore

is much b e tt er than any of h is predecessors in th is area. His choice of en semble averaging method is

unfortunate because, as noted by Buyevich, there too many hurdles that require simplification to

overcome.
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