
Few Remarks on Pros p eretti ’ s studies ( by V. S. Travki n)

 

The mathematical development of two-phase flow equations by Professor Prosperetti is much

better and more rigorous than that of his predecessors. There still remains, however, the problems

asso ciateds with ensemble averaging over statisti cal entities that are interconnected by various

processes or phenomena.

When Buyevich and Theofanous ("Ensemble Averaging Technique in the Mechanics of Sus-

pensions", ASME FED - Vol. 243, pp. 41-60, 1997.) were concerned about the obvious mismatch

between multiphase transport governing equations obtained by two different theoretical approaches

and state "the confusion due to various, seemingly incongruent, forms of the field equations (par-

ticularly of the momentum equations)" ... "this is especially troublesome, and we agree. It is not

exactly clear what the practical impacts are, but such a confusion goes to the heart of one’s edu-

cational effort and undermines the very foundation of the field". Their comments are well taken

because for 30 or more years everyone in this field has felt free to "create" his own governing

equations, and then to solve them. Prosperetti is no different albeit with more rigor. It is not

clear what it means when a less than rigorous solution sometimes compares well with experimental

or simplified data..

Two methods have been used to treat problems of the type that are of interest to Prosperetti.

There is ensemble averaging as exemplified by Prosperetti and volume averaging theory (VAT)

as exemplified by Whitake r and his student s or Travkin at UCLA. In wh at follows you wi ll fi nd

a detailed discussion of ensemble averaging i n the c ontext of the texts along with problems and

some comparison with the results of VAT (the equations derived using VAT are exact although

often difficult to solve). The past work of Prosperetti will be relied upon to do this.

Di sadvantages of Ens embl e Ave ragi ng Te chni ques:

In the work by Zhang and Prosperetti (1994), ("Averaged Equations for Inviscid Disperse Two-
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Phase Flow", J. Fluid Mech., Vol. 267, pp. 185-219) two assumptions were made; 1) N identical

particles; 2)potential fluid flow. These assumptions have obvious restrictions. The paper contains

some very nice comparisons with the results obtained by applying VAT averaging theorems. The

gradient of continuous phase volume fraction, ∇βc, given by their equ. (2.17) ( note that kml = βc)

∇βc =

]
|x−y|=a

dSyn

]
∞
d3wP (1; t) =

]
|x−y|=a

dSynn (y, t) , (2.17), (1)

where n (y, t) is local particle number density and n is the unit normal vector oriented outward

from the particles. This relationship is identical to the expression obtained using VAT,

∇ < m >= − 1

∆Ω

]
∂Sw

→
ds =

1

∆Ω

]
∂Sw

→
ds1, (2)

see, for example, Whitaker (1984,1994),

Two other theorems developed by Zhang and Prosperetti are also very close. Zhang and

Prosperetti’s equ. (2.23)

∇ (βc kfcl) = βc k∇fcl+
]

|x−y|=a

ndSy

]
∞
d3wP (1; t) kfcl1 (x, t | 1) , (2.23), (3)

has an analog from VAT theory

∇ (kml hp) = kml {∇p}f −
1

∆Ω

]
∂Sw

p
→
ds = kml {∇p}f +

1

∆Ω

]
∂Sw

p
→
ds1, (4)

and their equ (2.24)

∇kfcl = k∇fcl+ 1

βc

]
|x−y|=a

ndSy

]
∞
d3wP (1; t) [k∇fcl1 (x, t | 1)− k∇fcl (x, t)] , (2.24), (5)

is very similar to its VAT counterpart

∇hp = {∇p}f −
1

kml∆Ω
]
∂Sw

ep→ds = {∇p}f +
1

∆Ωf

]
∂Sw

ep →ds1. (6)
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A number of simplifying, and sometimes restrictive, assumptions were made to achieve closure

of their derived equations. On page p. 195, it is stated that - ”equations derived in the preceding

sections contain several terms involving integration over spheres with a radius equal to the particle

radius a”. They use the dilute limit of small particles to ”close” the momentum equations. They

also considered the case of ”finite volume fractions for the linear problem” formulate the problem

equations for inviscid and non-interactive (no convection)(see eqs. (6.1), (6.2)). For this linear

case, they compared their work with Sangani et al. (1991) following the further assumption of

a ”locally uniform pressure gradient” G(t), a circumstance of only limited academic interest (p.

201, also see Landau and Lifshitz, 1959).

On p. 203 they describe the numerical algorithm they used for a linear problem without colli-

sion forces. The ensemble averaging was done as indicated by the statement: ”we first calculate

volume averages over the fundamental cell and then average these values over the different re-

alizations. It is the result of this combined average that we identify with the ensemble average

kfl used in the previous sections”. As long as they only consider spatial uniformity , meaning

homogeneous spatial and statistical distributions, they are simply performing volume averaging.

They write (see p. 203, eq. (8.2)) that ”The volume-averaged fluid acceleration
h•
uc is obtained

directly from a knowledge of
h•
w (also volume averaged!) ” using equation

ρc

h•
uc =

1

∆Ωf

]
∆Ωf

(−∇pc) dω,

whose right hand side is the intrinsic phase average of the pressure gradient and equal to

ρc
h•
uc = −∇kpcl − 1

∆Ωf

]
∂Sw

p
→
ds,

is closed by Zhang and Prosperetti as

ρc

h•
uc =

1

βc

G(t)− βD

βc

ρD

h•
w, (7)
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which is the result obtained by VAT applied to an inviscid linear flow equation with constant

volume fraction -or porosity kml.

 Anal ysi s of work by Prosp e retti and c o- authors i n 1994- 97 publ i c a-

tions.

A few concluding remarks can be made about the "potential equations" stage of Prosperetti’s

studies. His work presents the most correct description of ensemble averaging methodology. Some

of his equations compared well with VAT equations and some are exact. There are a number of

severe restrictions to the works of Prosperetti and co-authors that should be mentioned:

1) N identical particles, (in their bubbly flow modeling they treat a monodisperse array of

particles and .

2) the fluid flow is potential flow.

Their particle motion equation neglects :

3) full effect of ∇kpcl - pressure gradient in the fluid,

4) Fac - additional force of relative acceleration of fluid around the particle;

5) FB - Basset’s term influensing the nonsteadyness of fluid flow around the particle (hereditary

force);

6) Stokes law influence on particle velocity;

7) Effective buoyancy force and

8) the momentum equation is not applicable at large Rep (particle Reynolds number).

Most of the assumptions and criticisms found the work by Buyevich assumptions are applicable

to the develoments by Zhang and Prosperetti, as noted in the following:

9) the drag forces exerted by the ambient fluid are linear in the relative fluid velocity (applicable

only fine particle suspensions),

10) ”all surface tension effects are ignored, so that stresses have no discontinuity at the inter-

face”;

11) overlook possible contributions to the effective stresses acting in a mean suspension flow
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due to fluctuations,

12) ”spheres to be free from imbedded dipole moments, so that there is no dipole interaction

of the spheres between themselves and with a corresponding external field”;

13) the relevant and interactive fields of particle positions, velocities, accelerations and angular

velocities are taken as independent variables, so that the ”strong friction” approximation under-

taken to simplify the development implies that only ”the positions vectors alone, ... are quite

sufficient to characterize possible configurations of the particulate ensemble”; and

14) The closure methods were developed for dilute cases (important to some applications).

Comparisons were made with Drew’s work but only for the exceptional dilute case.Substantial

comparison with work by Wallis (1991a,b) was done. Criticism was made of Wallis (1991a,b) for

”his use of area and volume", as opposed to ensemble averaging. Although all these averaging

techniques coincide for homogeneous systems, care is needed in interpreting spatial averages for

dense, non-homogeneous mixtures whereas ensemble averages are always well defined. A careful

comparison made case by case, situatiuon by situation, feature by feature, equation by equation

shows the supremacy of VAT in completenes and connections to limiting situations and practical

needs.

To c o mme nt on "....", we ne ed to out line th e differences with his work done d uring

the 1994- 97 (p otential fl ow) p erio d and what i s found in the text of the "...." . We f o cus on

one particular important publication where the most important features of recent advancements

by Prosperetti are shown. This is the paper by Marchioro, Tanksley, and Prosperetti, (1999)(

"Mixture Pressure and Stress in Dispersive Two-Phase Flow," Intern. J. Multiphase Flow, 25,

pp. 1395-1429).

On page p. 1396, it is stated "However, when the viscosity is large enough, the behavior of

the drops would be indistinguishable from that of rigid particles and yet, although the average

flow would be exactly the same in the two cases. the concept of "pressure" inside a rigid particle

would be devoid of physical meaning." This is an engineering approximation and detracts from
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the c laimed ri gor of the "....." .

On p. 1396 it is noted that -"Several authors avoid the introduction of disperse-phase pres-

sure and replace it by an "interfacial pressure", related to the mean continuous-phase pressure

in the neighb orho o d of the pa rticles (see, e. g., A nderson and Jackson, 1967; Ishii, 1975; Drew,

1983; Prosperetti and Jones, 1984; Arnold et al., 1989)." We will now look at the mathematical

construction and see how they treat this aspect of the problem.

The equation for the continuous state is

ρC

�
∂uC

∂t
+∇ · (uCuC)

�
= ∇ · σC −∇ψC

where σC is the stress, and ψC is the potential of the body force. In the case where the potential

is gravitational, they wrote ψC = −ρCg · x, instead of ∇ψC = −ρCg · x.Marchioro et al. apply

averaging separately to each side of the equation. They write

IC = βC k∇ · σCl − βC∇ψC , (3),

where the angle brackets denote the phase-ensemble average and βC is the volume fraction of the

continuous phase, which they note can be inhomogeneous in space. It is not clear why the authors

did not average the potential term ∇ψC correctly. It is easily shown that the gradient operator is

not averaged just by multipliyng by βC .

In their notations, the right hand side of this equation should be

k∇ψClC = ∇ (βC kψCl) +
]
dSyP (y)

|x−y|=a

kψC (x|y,t)l1 · ny.

The left part becomes

IC = ρC

�
∂

∂t
(βC kuCl) +∇ · (βC kuCuCl)

�
, (4)

Note, in equation (126) - page 1417, the space spacial property of the volume fraction βC is taken

to be constant and moved from within the averaging operator kl . This is incorrect.
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The term ∇ · (βC kuCuCl) should look like (in VAT notations)

k∇ · (βCuCuC)lC =

= ∇ < huChuC + euCeuC >C +
1

∆Ω

]
∂Sw

UCjUCi ·
→
ds =

= ∇ < huChuC + euCeuC >C +
1

∆Ω

]
∂Sw

UCjUCi ·
→
ds = (8)

= ∇ < huChuC >C +∇ < euCeuC >C +
1

∆Ω

]
∂Sw

UCjUCi ·
→
ds = (9)

= ∇ (βC {huChuC}C) +∇ < euCeuC >C +
1

∆Ω

]
∂Sw

UCjUCi ·
→
ds =

= ∇ �βC {huChuC}C
�
+∇ (βC {euCeuC}C) +

1

∆Ω

]
∂Sw

UCjUCi ·
→
ds,

The expression derived by Prosperetti does not have the term with the interface velocity-

production 1
∆Ω

]
∂Sw

UCjUCi ·
→
ds . Prosperetti and colleagues do not have this term in their earlier

papers of 94-97.

They explain the averaging of gradient terms as

βC (x) k∇ · σC (x,t)l = ∇ · (βC (x) kσC (x,t)l) +

+

]
dSyP (y)

|x−y|=a

kσC (x|y,t)l1 · ny, (10)

where P (y) is the single-particle probability density defined in Eq. (A7) and kσC (x|y,t)l1 is the

stress at x averaged conditionally (see the definition (A8)) to the presence of a particle with center

at y.Here we need to return, for a more precise description, to their definitions of the averaged

variables, functions and operators.

First, the phase average as it appeared in their 1994 paper,

6



kfC,Dl (x, t) = 1

N !βC,D

]
∞
dθNP (N ; t)χC,D (x;N) fC,D (x, t;N) , (A6), (11)

with the one particle probability distribution P (y,w) defined as

P (1) ≡ P (y,w) = 1

(N − 1)!
]
∞
dθ(N−1)P (N) , (A7)

and the one particle conditional average given by

β1C kfCl1 (x, t|y,w) =
1

(N − 1)!
]
∞
dθ(N−1)χC (x;N) fC (x, t;N)P (N − 1| 1) , (A8),

where the conditional probability P (N − 1| 1) is defined by P (N)= P (1)P (N − 1| 1) .

They use this averaging expression (page 1398 ) for the first (and most important ) right hand

side term with a perturbation expansion of the function βC (x) k∇ · σC (x,t)l in the form

βC (x) k∇ · σC (x,t)l = ∇ · (βC (x) kσC (x,t)l)−

−nA [σC ] +∇ · (βD (x)L [σC ]) , (6), (12)

where n is the particle number density defined in Eq. (A5) and there results

βD (x)L [σC ] = nT [σC ] +

+∇ · {nI [σC ] +∇ · [nR [σC ] + ....]} , (7), (13)

with

A [σC ] (x) =

]
dSr

|r|=a

σC (x+ r|x,N − 1) · n,

On page 1399 they state "Here the overline denotes the particle average defined in Eq. (A9)), i.e.,

the ensemble average over all the configurations such that one of the particles has center at x; the
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integration is over the surface of that particle. The terms neglected in Eq. (7) are of higher order

in a/L.”To complete these equations, the following terms are given by

T [σC ] (x) = a

]
dSr

|r|=a

n [σC (x+ r|x,N − 1) · n],

I [σC ] (x) = −1
2
a2
]
dSr

|r|=a

nn [σC (x+ r|x,N − 1) · n],

R [σC ] (x) =
1

6
a3
]
dSr

|r|=a

nnn [σC (x+ r|x,N − 1) · n].

With this and creating the intermediate steps in Prosperetti’s development, the equality defined

by Prosperetti (equ. 10) requires that the second term on the right hand side must be

]
dSyP (y)

|x−y|=a

kσC (x|y,t)l1 · ny = nA [σC ]−∇ · (βD (x)L [σC ]) =

= n

]
dSr

|r|=a

σC (x+ r|x,N − 1) · n−

−∇ ·

na] dSr

|r|=a

n [σC (x+ r|x,N − 1) · n]

+

+∇∇ ·

n1
2
a2
]
dSr

|r|=a

nn [σC (x+ r|x,N − 1) · n]

−

−∇∇∇ ·

n1
6
a3
]
dSr

|r|=a

nnn [σC (x+ r|x,N − 1) · n]

− ..... (14)

This is a very difficult looking expression.

The finished form of this equation becomes

IC = ∇ · (βC (x) kσC (x,t)l+ βD (x)L [σC ])− nA [σC ]− βC∇ψC , (13).
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The equation for the disperse phase after the analogous averaging

ID = βD k∇ · σDl − βD∇ψD, (15),

and then after expansion into a Taylor series, the gradient βD k∇ · σDl on the right hand side

becomes

ID = nAD [σD] +∇ ·←→Σ a −

−βD∇ψD, (16),

where the stress tensor
←→
Σ a is "conceptually similar to L”; its explicit expression is just another

series expansion (see equ. (19) in Prosperetti) and is not provided here. Note, however, that

the expression includes the factor k∇r · σDl , meaning the the average of the stress tensor is still

present in the mathematical expressions. Evaluation of this term is not an easy task.

Then authors lamped the both equations together and got the equation they often refer later

IC + ID = ∇ ·
�
βC kσCl+ βDL [σC ] +

←→
Σ a

�
− βC∇ψC − βD∇ψD, (20).

VAT theory yields a much simpler equation of the form, in VAT notation, for the stress term,

<
∂

∂xj
(2µS) >f=< ∇ · (2µS) >f= ∇ · (< 2µS >f )+

+
1

∆Ω

]
∂Sw

2µS ·
→
ds =

∇ · 2
�
kml hµhS + kmlqeµeSr

f

�
+

2

∆Ω

]
∂Sw

µS ·
→
ds, (15)

where S is the stress tensor. The second and third terms could also be represented by a series

expansion as was done by Marchioro et al. (1999). This breif remark should be kept in mind when

considering the usefulness of the ensemble averaging.
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