
0.0.1 POROUS MEDIUM TURBULENT VAT EQUATIONS

After averaging over the REV the basic initial set of turbulent transport equa-
tions (see, for example, Rodi [27] )
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and using the averaging formalism developed in the works by Primak et al.
[22], Shcherban et al.[23], Primak and Travkin [28], one obtains the following
equations for mass conservation
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for turbulent filtration (with molecular viscosity terms neglected for the sim-
plicity)
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and for scalar diffusion (with molecular diffusivity terms neglected)
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Many details and possible variants of the above written equations with ten-
sorial terms are found in Primak et al. [22], Shcherban et al. [23], Travkin
and Catton [16,17]. The volume averaging procedures were applied in the work
by Masuoka and Takatsu [29] to derive the VAT turbulent transport equations.
Like in numerous other studies pertaining to multiphase transport modeling,
the major difficulty in averaging right hand side terms has been overcome us-
ing assumed artificial closure models for stress components terms. As a result
the averaged turbulent momentum equation, for example, has conventional ad-
ditional resistance terms like the momentum averaged equation developed by
Vafai and Tien [30] for laminar regime transport in porous medium.
One dimensional mathematical statements will be used in what follows fur-

ther for simplicity. Admission of specific types of medium irregularity or ran-
domness requires that complicated additional expressions be included in the
generalized governing equations. Treatment of these additional terms becomes
a crucial step once the governing averaged equations are written. An attempt
to implement some basic departures from a porous medium with strictly reg-
ular morphology descriptions into a method for evaluation of some of the less
tractable, additional terms is explained below.
The 1-D momentum equation with terms representing a detailed description

of the medium morphology is depicted as follows
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where Km is the turbulent eddy viscosity, u
2
∗rk is the square friction velocity at

the upper boundary of surface roughness layer hr averaged over interface surface
Sw.
General statements for energy transport in a porous medium require two-

temperature treatments. Travkin et al. [31] showed that the proper form for the
turbulent heat transfer equation in the fluid phase using K-theory one-equation
closure with primarily 1-D convective heat transfer is
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while in the neighboring solid phase, the corresponding equation is
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The generalized longitudinal 1-D mass transport equation in the fluid phase,
including description of potential morpho-fluctuation influences, for a medium
morphology with only 1-D fluctuations is written
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while the corresponding nonlinear equation for the solid phase
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