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gies with Regular and Random Morphological Characteristics

Consistent research and development in porous medium morphology reveals that
more and more realistic structures in the pore network image must be treated
(see, for example, Mann and Yousef [44], etc). Inasmuch as each of the significant
morphology structure elements can be randomly assigned, (Mann and Yousef,
[44]; and other studies), workers have gradually developed a more sophisticated,
randomized, network morphology, with up to 5 degrees of randomness; 1) pore
surface roughness: 2) pore diameter; 3) pore length; 4) pore pathway between
modes (for tortuosity); 5) pore cross-sectional shape.
In the work by Sahimi [45], diffusion controlled reaction and transport of

species is being modeled as a network of branching pores, with no closed loops.
It is called the wood approximation and does not allow the study of real pore
networks. Another drawback to this kind of approach is a fixed pore length
resulting because diffusion along the pore from one node to another has been
approximated by a finite difference scheme, often based on constant internode
spacing the pore length is fixed. These are very serious restrictions and have
been noted elsewhere (Kheifets and Neimark, [12]).
Contemporary technology can measure, with certain confidence many of the

pore‘s media characteristics, the total void fraction, the density of the solid
phase, the relative pore size distribution for pores larger than 30 angstroms in
diameter, and the equilibrium adsorption characteristics of the porous medium
solid phase (Sircar and Rao, [46]). There is a problem of how to connect porous
medium morphology characteristics that can and are being measured and to the
transport equation, beign considered and their coefficients.
The method of effective medium approximation (EMA) is used in many pre-

vious works and shows excellent results, see Koplik [47]. Essential differences
exist in our approach and the commonly used EMA approach where the actual
problem pore network is replaced by a network with artificial uniform morphol-
ogy (Sahimi, [45], Mojaradi and Sahimi, [48], Jerauld et al. [49], Koplik, [47],
and etc.) and effective properties such as the effective diffusivity, Deff , or the
effective reactivity, Reff . An important consideration, most often not dealt
with, is determining which network morphology properties can be assigned ex-
ternally, or from an effective properties point of view, which can be justified.
Some of the network characteristics should be calculated to match the problem
features and not assigned.
Another important point is that much of the previous research results are

based on substitution of porous medium properties and functions using arti-
ficial network simulation capabilities without satisfying the initial equations.
The concern is that the physical problem, which is simulated with the help of
network modeling, must still be modeled on the basis of its initial physical and
mathematical statements. The development of models of irregular and random
networks of pores in the REV with consequent substitution of closed morpho-
convective and morpho-diffusive terms into the transport equations is a part of
current research. Numerical modeling and application of theoretical studies to
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this kind of closure approach is based on realities of medium morphologies.
It had been proven that the generalized momentum and scalar transport

equations correctly involve additional terms which quantify the influence of the
medium irregularity. Theoretical forms of these additional terms, derived from
application of the closure methodology, were reviewed for both one- and two-
dimensional cases in a porous medium morphology consisting of specified, sta-
tionary distributions of a polydisperse ( including binary) system of straight,
non-intersecting pores (Fig. 1). The differences among the modeling results,
and their significance to the closure scheme, were increased by introducing spe-
cific kinds of nonregularity to the medium‘s morphology. In some cases, large
deviations in the overall results were obtained by merely allowing small mor-
phology nonregularities (Gratton et al., [50]). It was shown numerically that
slight manipulations of this particular morphology descriptors can create large
fluctuations in transport parameter values, signifying the potential for model-
ing errors if particular features of the morphology are neglected. Important
physical behavior was extracted from the morphology model by illustrating how
hydrodynamic flow regime considerations also significantly effect the transport
parameter values.
Variants of the flow 1D creep transport equations for systems with imper-

meable interface can be obtained from the next forms of the equations (some
details of derivation and similar equations can be found in Whitaker‘s, [9] work)
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Variable porosity presence will resume in an equation
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or second version when hmi 6=const and interface is impermeable
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Using more common notations, these equations are written
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or with fluctuation terms (hmi =const)
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These two equations can be simplified for well defined morphologies such as,
for example, straight pore morphology to a form more useful for comparisons
with the published results of different workers.Droping the gravitation force
term for simplicity and expressing interface stress term through the full velocity
variable one can get
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Which differentiates from the equation (3.1) found in the work by Ma and
Ruth [6]
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by one term - the first term on the right hand side of Ma and Ruth [6]
equation. The latter equation is the equation developed by Ma and Ruth for
morphology of straight periodically contracted pores (tubes). This equation
is correct only for constant porosity < m > and that condition fortunately is
satisfied.
The intrinsic averaging process used in this work for the momentum equation

is inappropriate for vector quantity equations (equation (2.3) given by Ma and
Ruth, [6]). One of the problems arises from the boundary conditions for vector
quantities, velocity in this case. The correctly averaged momentum equation
for periodically contracted straight pore morphology has the form 7. Despite
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the almost correct 1D momentum equation form derived by Ma and Ruth [6],
closure of the additional integral terms was not achieved. The authors found a
way to represent the integral terms as outstanding constant values. Meanwhile,
the closure of these terms can be obtained following the procedures described
by Travkin and Catton [4], where the skin friction term treated as, for example,
for a laminar boundary layer
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where τwL is the wall laminar shear stress, SwL is the laminar part of the
specific surface in the REV, cfL is the mean skin friction coefficient in the REV
laminar region. The form drag integral term is approximated by
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where cdp is the mean form resistance coefficient in the REV, Swp is the ratio
of the cross flow projected area of obstacles to the representative elementary
volume ∆Ω. One should to note that these are well established ideas used
in the different areas of fluid mechanics. Here they are applied to a separate
elementary subarea on the interface surface ∂Sw with the consecutive averaging
over the ∂Sw. Substituting these expressions into equation 7 yields
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Finally this equation yields the form for a constant bulk pressure loss for a
constant porosity media that is quite applicable to many nondemanding prob-
lems, as well as being appropriate for comparison with existing experimental
data on drag resistance in porous media:
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It is clear that the morphology which comprise directly a drag resistance
experimental data has obvious relieve for final evaluation. Hsu and Cheng [32]
given an approach for closure of the resistance integral terms in dilute spherical
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particle suspensions which is based on a solution for a single particle in a cell.
The expression for drag coefficient cd they derived is
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which is very close to what is usually assumed for globular morphologies
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.

The authors managed to determine the constant coefficients in the drag force
relation and obtain Ergun expression with two integral resistance terms in the
averaged momentum Navier-Stokes equation.
The simplicity of the equation 12 is achieved mainly because of the sim-

plicity of straight pore morphology. The integral drag resistance terms in the
creep or Stokes flow transport equations can be closed whenever theoretical or
experimental values of the drag resistance are available.
There presently are only a few studies of large Reynolds number flows where

constant coefficient Navier-Stokes equations could be applied (see, for example,
Jaiswall et al., [51], LeClair and Hamielec, [52]). It is unfortunate that when
Jaiswall et al. [51] were describing the variances between their results and
similar ones obtained by LeClair and Hamielec [52] they did not recognize that
the morphologies of the media were different.
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