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ABSTRACT
Equations for transport of momentum, heat and mass species in a regular porous media based volume
averaging theory (VAT) as known to be different than in a media with irregular or random space
structures. Consistent closure models are developed for these equations for media with irregularities in
a substantially regular porous media. One dimensional straight parallel pore morphology (SPPM) is
chosen because analytical solutions for bulk permeability and dispersion coefficients can be obtained. A
single phase fluid medium is considered with the potential for accompanying transport of a dilute specie.
Numerical simulation results are presented for a canonical morphology consisting of specified, stationary
distributions of  binary and random diameter distributions of straight pores. Unexpected results were
obtained for various flow regime momentum transport in irregular media demonstrating the influence of
the both weak and sufficiently large deviations in the porous medium's morphology. Suggested the
Poiseuill like equation for this morphology with no adjusted but strictly defined parameters.

    NOMENCLATURE 

C - mass fraction concentration [-]
c#d - mean skin friction coefficient over the  turbulent area of MSw  [-]
cd - mean drag resistance coefficient in the REV [-]
cdp - mean form resistance coefficient in the REV [-]
cfL - mean skin friction coefficient on the REV laminar region [-]
ds - interface differential area in porous  medium [m2]     
dch - character pore size in the cross section [m]
D - molecular diffusion coefficient [m2/s]
dh - capillary morphology characteristic pore diameter [m]
di - diameter [m] of i-th pore [m]
dm - mean diameter of medium’s pores [m]
dp - particle diameter [m] 
Eupor -porous medium Euler number [-]
ff    -Fanning friction factor [-]
g -gravitational constant [m/s2]
hr - pore scale microroughness layer thickness [m]
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MSw - internal surface in the REV [m2] 
K - permeability [m2]   
Kc - turbulent diffusion coefficient [m2/s]
Kcf - analytic longitudinal diffusion coefficient [m2/s]
Ke - absorption equilibrium constant [-]
Km - turbulent eddy viscosity [m2/s]
Lpor - porous medium general scale [m]
+m, - averaged porosity [-] 
N - number of pores [-]
ni - number of pores with diameter of type i [-]
p - pressure [Pa] 
Pepor - ={U}f Lpor /D , porous medium Peclet number  [-]
Per - particle radius Peclet number  [-]
Pr - </af, Prandtl number [-]
Repor - ={U}f Lpor /< , porous medium Reynolds number  [-]
Rem - ={U}f dm /< , mean Reynolds number based on mean pore diameter [-]
S - cross sectional flow area [m2] 
Sc - source or sink in diffusion equation [s-1]
Scr - total cross sectional area available to flow [m2]
Spr - projected obstacle area on the cross perpendicular pore surface [m2]
Sw - specific surface of a porous medium  MSw/)S [1/m]
Swp - = Sz/)S [1/m]      
Sz - cross flow projected area of obstacles [m2]
tT - time interval for averaging of turbulent variable [s]
u - velocity fluctuation [m/s]
Un

 
- dimensionless porous medium interstitial velocity [-]

Um - characteristic velocity in porous medium, equals to laminar regime velocity in dh tube,
 Eq. (32) [m/s]

u*rk
2 - square friction velocity at the upper boundary of hr averaged over surface MSw [m2/s2]

Subscripts

f - fluid phase
L - laminar
n - nondimensional
r - roughness
s - solid phase
T - turbulent
w - wall
i - species or pore type

Superscripts
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Î  -value in fluid phase averaged over the REV
* -equilibrium values at the assigned surface 
° -value in solid phase averaged over the REV x - mean turbulent quantity

    - mean cross-section quantity in a pore

v - fluctuation value in a phase

Greek letters

"# C - averaged mass transfer coefficient over MSw  [m/s]
)S - representative elementary volume (REV) [m3]  
8 - Darcy friction coefficient in tubes [-] 
: - dynamic viscosity [kg/(m s)] or [Pa s]
< - kinematic viscosity [m2/s] 
D - density [kg/m3]
Jw - wall shear stress [N/m2]   

INTRODUCTION

Determination of flow-variables and scalar transport for problems involving heterogeneous
porous media is difficult, even when subject to simplifications allowing the specification of medium
periodicity or regularity.  Conventional  linear or linearized models fail to properly account for
transport phenomena, requiring separate dynamic coefficient models that must be solved to correct for
their short-comings. Additionally, the correct form of the equations describing processes in a
heterogeneous media remains an area of current debate among researchers (see Travkin and Catton,
1992).  Allowing inhomogeneities to adopt random or stochastic character further confounds the
already difficult task of properly identifying important transport mechanisms and predicting transport
phenomena.  

At present, the prevailing opinion is that “It is generally realized that it is possible to model
transport properties of porous media without any reference to pore geometry, and merely use a large
number of adjustable parameters in the model that do not have any physical meaning” (see Dullien,
1991). The functional dependence of porous medium characteristics like permeability on its elements
like pore diameter, length, pore roughness etc. seems to be non-existent at the present time, apart from
a straight pore bundle with laminar regime (Scheidegger, 1960)..

Research on porous medium morphology reveals that more and more realistic structures in the
pore network image must be treated (see, for example, Mann and Yousef 1991).  Inasmuch as each of
the significant morphology structural elements can be randomly assigned, (Mann and Yousef, 1991;
and other studies), workers have gradually developed a more sophisticated, randomized, network
morphology, with up to 5 degrees of randomness;  1) pore surface roughness: 2) pore diameter; 3) pore
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length; 4) pore pathway between modes (for tortuosity) and 5) pore cross-sectional shape.
In the work by Sahimi (1988), diffusion controlled reaction and transport of species is being

modeled as a network of branching pores, "with no closed loops".  It is called the "wood"
approximation and does not allow the study of real pore networks. Another drawback of this approach
is that diffusion along the pore from one node to another has been approximated by a finite difference
scheme, and with constant inter-node spacing, the pore length is fixed.  These are serious restrictions
and they have also been noted by Kheifets and Neimark (1982).

With contemporary technology, measurements of  the total void fraction, the density of the
solid phase, the relative pore size distribution for pores larger than 30 angstroms in diameter, and the
equilibrium adsorption characteristics of the porous medium solid phase (Sircar and Rao, 1990) can be
made with confidence. There is a problem of how to connect the porous medium morphology
characteristics that can and are being measured to the  transport equations and coefficients.

The method of effective medium approximation (EMA) has been used by several researchers 
and shows some good results, see Koplik (1981). Essential differences exist in our approach and  the
commonly used EMA approach where the actual problem pore network is replaced by a network with
artificial uniform morphology (Sahimi, 1988; Mojaradi and Sahimi, 1988; Jerauld et al. 1984; Koplik,
1981; and etc) and effective properties such as the effective diffusivity, Deff, or the effective reactivity,
Reff. An important consideration, most often not dealt with, is determining which network morphology 
properties can be assigned externally, or from an effective properties point of view, which can be
justified. Some of the network characteristics should be calculated to match the problem features and
not assigned.

Another important point to note is that much of the reported research results are based on
substitution of porous medium properties and functions using artificial network simulation capabilities
without satisfying the initial equations.  The concern is that the physical problem, which is simulated
with the help of network modeling, must still be modeled on the basis of its initial physical and
mathematical statements. The development of models of irregular and random networks of pores in the
REV using closure models for the morpho-convective and morpho-diffusive terms into the transport
equations is part of our current research.  Numerical modeling and application of theoretical studies to
this kind of closure approach is  based on realities of medium morphologies.

Direct Numerical Modeling (DNM) was applied to a straight parallel pore morphology 
medium (SPPM) by Yuan et al. (1991) to derive a thermal dispersion coefficient, which is actually an
effective one-temperature coefficient of conductivity. To obtain analytical solutions they made a
number of assumptions ( for example the interface surface - wall heat flux assumed to be a constant
value) from which one let authors to separate the solutions of equations for initially conjugate
statement. 

Treating specific types of medium irregularity or randomness introduces complicated
additional terms in the generalized VAT based governing equations (Whitaker, 1967, 1977, 1986a,b;
Scherban et al., 1986a,b; Travkin and Catton, 1992, 1993, and Travkin et al., 1994a, Catton and
Travkin, 1996).  The additional terms, which are not seen in typical governing equation sets commonly
used for heterogeneous media, determine the nature of the solutions and are the central issue of the
closure problem. Treatment of the additional terms becomes crucial once the governing, averaged
equations are written.  The present study attempts to implement some basic departures from strictly
regular morphology descriptions of the porous medium and illustrates a method for evaluation of some
of the less tractable, additional terms present in the VAT governing equations.



-5-

There are several  “morpho-fluctuation” terms in each of the VAT based equations that need to
be modeled. Closure models allow one to find connections between experimental correlations for bulk
processes and the present simulation representation and to incorporate them into numerical procedures. 
These relationships can either be analytical expressions determined with the aid of approximate
theoretical evaluation or experimental correlations. As found in a study by Crapiste et al. (1986), the
usual way of solving the closure problem particular to porous medium transport requires solution of a
more complex integro-differential equation set for fluctuations in a real fluid volume domain.
Consequently, knowledge of, or an assumption about, the porous medium morphology is required.

Methods for obtaining closure of the governing equations bulk processes in monodisperse
regular and non-specified, random polydisperse media using experimental correlations have been
described by Travkin and Catton (1992, 1995), Travkin et al., (1993)  and Gratton et al. (1993, 1996). 
Travkin and Catton (1992, 1995),  and Gratton et al. (1996) also compared various coefficient models
by numerical simulation of flow within a two-dimensional porous layer.  The current study illustrates a
closure scheme for a specified capillary morphology model - straight parallel pore morphology
(SPPM), by observing system behavior over an ensemble of realizations for the chosen morphology.
Exact closure of the equations of flow and heat transfer are possible for this canonical morphology. 

A goal of this paper is to demonstrate a general  approach to modeling of transport  phenomena
in porous media based on volume averaging. A particularly simple geometry is chosen so that all the
elements of the method can be exercised and it can be demonstrated to be complete. In this study the
closures are developed for capillary medium morphology models. It is shown that the approach taken
to close the integral resistance terms in the momentum equation for a regular structure can be obtained
in a way that allows the Darcy-Kozeny-Carman or Forchheimer type second order terms for laminar
and turbulent regimes, as shown by Travkin and Catton (1992a, 1995), to naturally appear for different
flow velocities. For the case of this simple morphology, the integro-differential equation set is closed
and the closure modeling approach used provides a framework for the closure process concerning
problems involving more complex heterogeneous morphologies.

THEORY

SIMPLIFIED GOVERNING EQUATIONS FOR  FORCED TRANSPORT IN SPECIFIC
TYPES OF POROUS MEDIA 

The VAT based turbulent transport equations for a single phase fluid in a highly porous
random media have more integral and differential terms than in the convenient homogenized or
classical continuum mechanics equations. Numerous examples are found in work by Whitaker (see, for
example, 1977, 1986a,b, etc.) for laminar transport in porous media. The porous medium structural
morphology determines the importance of these terms and the range of application of the various
closure schemes can easily be shown to clearly manifest themselves in the order of magnitude of the
predictions of  both local and bulk flow parameters even for single-porous medium structural elements
(e.g. the coefficient for a single bead, or single straight pore).  These investigations involved the
evaluation of strictly regular media morphologies, which allows the omission of many morphology-
specific differential and integral terms from the  general VAT based set governing equations.
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(1)

The VAT based 1-D turbulent K-theory momentum equation is depicted as follows (Scherban
et al., 1986b, Catton and Travkin, 1996):

where the averages are defined as follows:
1. Average turbulent quantity in a pore,

2. Average over the fluid phase within the REV,

3. Average over the solid volume within the REV

4. Average over the entire REV,
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(2)

and  "^" denotes the fluctuations of mean turbulent variables in the fluid domain.
Steady, fully developed momentum transport in a simplified spatial structure of straight

capillaries SPPM, see Fig. 1, often used as a canonical morphological model of porous media,  serves
as a test problem for which exact closure to Eq. (1) can be demonstrated.  For this equation, closure is
achieved by modeling the overall drag resistance factor, cd, the second and third terms on the right
hand side, and second and third  morpho-diffusive terms on the left hand side the equation. The very
simple medium morphology allows one to obtain exact and definite closure. 

The morphology of the medium shown in Fig. 1 possess the following features:
1) the spatial distribution of pores is stationary in  the lateral direction and accordingly, the  velocity
deviations are also, 
2) the second morpho-diffusive term on the left hand side (1),  no longer requires retention,
3) the assumed independence of momentum transport from lateral coordinate far from the interface
surface removes the first term on the left hand side and
4) the constant  flow along each capillary in the REV and in each neighboring REV along of x axis
determines that the differential terms to be dropped.

A fully developed flow regime,  far from input - output regions, in the assumed medium
eliminate the differential terms in Eq. (1). The resulting VAT based  momentum equation becomes

A few closure equations for the morpho - terms in the VAT equations like (1) and (2) were introduced
and numerically evaluated by Travkin and Catton (1992, 1993) and Gratton et al. (1993) for typical
regular or nonstructured porous media.

For closure of the integral terms in the above equations, one has to integrate over the interface
surface (between solid and fluid) in the REV. In the case of discrete obstacles on the wall, it is the
integral over the obstacle surface. The closure scheme for skin friction resistance terms in Eq. (2) is
based on
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(3)

(4))

where interfacial stresses are represented by conventional friction coefficients for laminar and
turbulent flow. For laminar subregion they are 

For turbulent flow over a rough wall, the contribution of  laminar friction (index L) is usually
negligible. 

The integral term for the form drag resistance is closed using an analogous approach based on a
pressure resistance coefficient,

With this coefficient, closure of the pressure resistance integral term is given by

In the similar way can be obtained the same closed form for the 1D momentum laminar
transport equations for systems with impermeable interfaces. Using the following forms of the VAT
based porous media laminar momentum equation
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(5)

(6)

(7)

(8)

or in variable’s fluctuation form

The later equation in 1D form is 

This equation for constant momentum flux and porosity function, with negligence of mass force can be
rewritten in the form 

  Meanwhile, the closure of these two integral terms can be obtained following the same procedures
developed earlier by Travkin and Catton (1992) and Travkin et al. (1993) and applied above in (3), (4)
for simplified turbulent momentum equation where the skin friction term is treated using conception of
averaged over the REV mean skin friction coefficient cfL.
  Substituting these expressions into equation  (8) results in
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(9)
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(13)

(14)

where Cf* is the equilibrium fluid phase concentration at the interface (which can be assessed through
the equilibrium condition at the interface as Cf* = {C}s Ke ), and  is the solid-fluid interface 
outward directed normal 

Transport Processes in SPPM. By developing procedures for velocity and concentration
fluctuation calculations, the closure of the second and third terms in this equation can be found. 
Separate morphologies allow one to seek analytical derivations. For the classical case of parallel tube
bundles with assigned non-regular or stochastic distributions of morphology characteristics, such as
tube diameter and porosity, analytical expressions can be obtained for bulk characteristics, like the
overall drag resistance coefficient, cd. (10) and fluid phase dispersion coefficient. While it is sufficient
for equation closure to model the overall drag resistance factor, cd, and the morpho-diffusive and
morpho-convective terms on the left hand sides of the Eq.s (11), (12), this very simple morphology is
important because it allows exact and definite problem closure. The closure models developed in
earlier work by Primak et al. (1986), and Shcherban et al. (1986), as well as more recent publications
by Travkin and Catton (1992) and Gratton et al. (1993) for specific regular morphologies were based
on experimental data for these types of porous media.  

Let us represent the turbulent quantities in the averaged equations by decomposing as follows
(Primak et al. 1986; Shcherban et al. 1986, Travkin and Catton  1993)

where the index "k" signifies turbulence-induced components which are independent of
inhomogeneities in spatial dimensions and properties resulting from the multitude of porous medium
channels (pores), and "r" denotes the fluctuation contributions due to the porous medium
inhomogeneity.

For straight, smooth, nonintersecting pores, the various velocity averages are represented for
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(15)

(16)

the turbulent regime, 

The velocities in the laminar regime are represented by a similar decomposition

The velocity field will be represented by these components in each of the elementary elements (cell) of
the REV. 

Analysis of the pore elements, both point and mean values, is best shown by considering a bi-
pore morphology. The turbulent velocity in the pore of  a bi-pore morphology with radius r1 is given
by

when the average in the REV, defined over the averaging volume )Sf =)S1 +)S2, is given by

The velocity average in the pore with radius r1 can be related to the bi-pore average fluid velocity and
the velocity fluctuation magnitude by noting that 
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(17)

(18)

where (Fig. 2) 

Values of both fluctuation functions are shown in the Fig. 2 and it is obvious that a2 different from a1,

The average of the fluctuation function withing the REV is   

and this will be true when the number pores is arbitrarily increased.
The preceding development is for the case where the medium morphologies’ (for example, in

those allowing a clear analytical solution) fluctuation values can be treated as element-specific
functions or constants.  For the current morphology the velocity as well as coordinate and
concentration field independent dispersion coefficient fluctuations can be depicted without constraint
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(19)

(20)

as being element-specific. This allows one to easily restore the point-values of the fluctuation
functions from a1 and a2 for a given SPPM, e.g. a laminar flow, 

A goal of closure of the morpho-terms in the VAT based equations is to obtain such profiles.  
By limiting the scope of this work to straight, smooth, nonintersecting pores, the

decomposition analytically establishes that all fluctuations are formally turbulence-induced, for the
morpho-fluctuation influences vanish. Elimination of those features which happen to exist in general
VAT governing equations, but are not applicable to the physical situation arising from this specific
type of porous medium, reduces the equation governing the flow of fluid (9) or (2) to the two term
expression

which is pretty much the same in form to the equation routinely used for analysis of packed bed and
porous media experiments. The difference is that the equation (20) is correct for only internal porous
medium momentum transport and for only homogeneous constant morphology characteristics medium
with strict regularity in the x-direction. The another difference is the rigor in the development of the
equation from the VAT based general 1D momentum equation. 

Application. The flow field in each pore is governed by well established completely defined
mean value  expressions 

with the friction resistance coefficient given for laminar and turbulent regimes respectively. In the
intermediate regime where 2100 #  Red,i  # 4000,  the formulations of Kakas et al. (1987) were used to
solve transcendental equations to get resistance coefficient in this range. 

To assert the differentiability of random functions of the morpho-diffusive term in the
momentum equation, specific conditions should be assumed for the morphology. If considering a
random system of pore diameters (Fig. 1), fundamental definitions provide the basis for closing the
skin friction and form drag integral terms on the right-hand side of (2) and (8), resulting in formulation
of a drag coefficient sensitive to morphology characteristics and accounting exactly for skin-friction in
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(21)

(22a)

(22b)

each individual pore,

For a one diameter system, the permeability can be shown to have an exact analytical form that  is both
morphology and flow regime dependent,

Achdou and Avellaneda (1992) analyzed several microstructures to test the validity of the
Johnson, Koplik and Shwartz (1986) effective medium theory in specified regimes.  By considering an
exactly solvable, in-parallel idealized porous microstructure consisting of nonintersecting, straight
capillaries of binary diameter with circular cross-section, and furthermore assuming that all pore
orientations are equally likely, simplifications for the formation factor were made and the authors

established, provided that mi is the specific volume of 2nd size capillaries and 

An analytical longitudinal diffusion coefficient for the bulk may be defined considering the
same system of straight, smooth, non-intersecting circular capillaries.  Introducing expressions for the
longitudinal dispersion in each porous morphology element requires that various flow regimes be
considered.  For turbulent flow within a single pore, Taylor (1954) assumed a "universal" velocity
profile, the validity of Reynold's analogy, and that the coefficients of longitudinal and lateral diffusion
are equivalent,
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(23)

(24)

(25)

(26)

It should be noted, that the classical analogy used by Taylor (1954) is actually incorrect, as the new
evidences appear regarding insufficiencies of some very well adopted correlating equations (see, for
example, Churchill and Chan (1995a,b), and Churchill (1997). So far, for the theory demonstration
goal of present work this has no significant impact. The equation (23) is valid provided that the flow in
pores of type "i" is turbulent.  However, for a given, imposed pressure gradient, flow may be either
laminar, or intermediate, or turbulent in the considered pore, depending on various geometric factors,
thus, an effective longitudinal diffusion coefficient can be defined for the laminar pore-flow regime. 
Following Carbonell (1979), the effective laminar diffusion coefficient in each pore based upon the
bulk, flow cross-sectional area averaged velocity is given by,

Finally, an analytical longitudinal bulk diffusion coefficient is obtained,

The semi-analytical and analytical deviations  can now be calculated from the following expressions

where the superscript (s) means deviations per medium element (per pore). Evaluation of
concentration or temperature deviations is limited. The velocity and bulk longitudinal dispersivity
coefficient deviations are not dependent on the longitudinal coordinate in a morphology of straight
pores with assigned in present work conditions per element. This eliminates the influence of the
morpho-convective and morpho-diffusive terms in the transport equations. 

It is widely accepted that when a media composed of  globular morphologies can be described
in terms of Sw, <m>, and dp,  for example a spherical particle medium with 



-13-

(27)

(28)

the same dependency on the equivalent pore diameter results as one finds for a one diameter capillary
morphology, see below, leading to

The latter dependency is a strong argument for a simple ''universal'' porous media length scale
defined by

This scale meets the needs and internal logic of both major morphologies - capillary and globular, and
incorporates two properties of the media, both void fraction and specific surface area. It has a solid
theoretical basis for at least for two types of canonical porous media morphology (straight capillary
parallel pore morphology - SPPM and one diameter sphere globular morphology) and was arrived at
with different theoretical reasonings earlier by others, e.g.  Kays and London (1984), etc.  There are a
number of analysis and experimental studies of different porous media morphology leading to the use
of a porous media Reynolds number that is of the form 

Although various porous media pressure resistance models are described by others (see, Bird et al.
(1976), Fand et al. (1987), and Chhabra (1993)), the current description for scale dh allows the
transformation and comparison of correlation equations and experimental results obtained for diverse
morphology media and the use of various scaling.  It also allows experimentally determined
characteristics of the media to be related to the closure relationships derived from the VAT based
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(29)

(30)

(31)

(32)

equations by  Travkin and Catton (1997a,b).
It was shown by Travkin and Catton (1992, 1995) that a good approximation for a

homogeneous porous media is

where ff is the Fanning friction factor. This allows one to determine the drag resistance in Eq. (20)
from the bulk value of the pressure loss coefficient,  ff , obtained from experimental correlations, when
it is used as shown, 

There are a few reasons why the media drag resistance and the Fanning friction factor are not identical.
One of them is because the media inflow and outflow pressure losses are usually incorporated into the
correlations for  ff in the data reduction process. Others are the result of the additional morphology -
dependent terms in the general momentum VAT equation. 

Having established the relationship with a conventional experimental reduction technique, one
can reformulate any experimental correlation for use in the simplified VAT based bulk 1D momentum
equation,

It can be shown that the conventional two-term drag resistance coefficient expression used in the
Reynolds-Forchheimer equation pressure loss equation is convertible to the Fanning factor type
coefficient cd in the (31) (Travkin and Catton, 1995, 1997b).

With this expression, any correlation for the Fanning friction factor can easily be compared and
analyzed. The scales chosen for using with Eq. (31) are 
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(33)

(34)

(35)

where Um is the laminar regime velocity in a tube with dh diameter. So, the dimensionless  VAT based
momentum equation becomes (this implies that the pressure drop causes in a distance Lpor )

where the Euler porosity number is given by

With the scaling velocity given by  (32), the Eq. (33) for a one-diameter SPPM will have drag
resistance cd equal to Euler number in the steady-state regime. As soon as the current SPPM allows the
direct analytical evaluation, this equation may be written in the form which supply the direct solution
for cd(Eupor) as well as for Un.
   The VAT momentum equation (34) can be written also in terms of overall discharge as an analogous
equation to Poiseuill’s law for straight tube

The 1D VAT simplified nondimension momentum equation for homogeneous porous medium yields
the form

where cd(Eupor) is determined in (21). This equation is valid for every flow regime occuring in arbitrary
selected pore or in an assigned distribution of pore bundle. If laminar regime occurs in each of the pore
in pore bundle, it is known that this kind of momentum  equation  resolves with the exact analytical
formulae for the drag resistance. In other regimes this equation includes the drag resistance estimations
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or correlations obtained experimentally or analytically for each pore. 

RESULTS AND DISCUSSION

Two types of morphology are addressed. First, a two diameter capillary morphology is studied.
This is followed by a study of a capillary morphology with random diameter sizes.  

Binary Set of Pores. Numerical methods were employed to calculate the coefficients
described in Eqs.(21), (22), (25) and (26).  Though solution of the equations does not require any
special or elaborate numerical schemes, when considering a variety of morphological parameter
combinations the proliferation of data quickly makes data management tedious.  Hence, computations
were performed and organized on a digital computer.  Morphological parameters which were varied
while modeling the binary, smooth, nonintersecting straight circular pores included <m>, n1, n2 ,dch,2,
and Sw while the small-pore diameter, dch,1, the total number of pores, n, and the total cross-sectional
area were held constant at specified values.  Results are provided for four distinct sets of
morphological characteristics involving three distinct porosities. Two separate morphological
characteristics corresponding to an identical porosity are given to illustrate the effects associated with
altering the real, geometric structure, though certain non-dimensional and fractional quantities are
equivalent.

Predictions of the drag coefficient as a function of the bulk Reynolds number are shown in Fig.
3.  The drag coefficient generally decreases for increasing porosity at equivalent Rem and the profiles
all approach a horizontal asymptote as a "fully turbulent" regime is approached for a prescribed
morphology.  Additionally, the effect of high porosity is to advance the onset of the turbulent
transition to smaller bulk Reynolds numbers.  The <m> = 0.399 profile with large-pore fraction, n2/n,
equivalent to 0.56 shows an appreciable reduction in cd for <m> = 0.602 and <m> = 0.399 profiles,
which is a coincidence.  The ability of the <m> = 0.399, n2/n1 = 0.56 profile to surpass the <m> =
0.602 profile in performance is largely due to the lower porosity curve having a specific surface, Sw,
only slightly over two-thirds that of the <m> = 0.602 profile.  Because no tortuosity has been
introduced into the morphology model, flow resistance is provided only by wall shear.  Hence,  the
parameter Sw exerts great influence upon the bulk flow field by the mechanism of fluid-friction.  It is
evident that the proper combination of <m> and Sw will greatly change the prescribed morphology
flow admittance and that, furthermore, minimizing Sw can result in drastic coefficient-value
improvement which may even out-pace the adverse influence of decreased <m>.

Observation of the bulk permeability behavior, K, as function of the overall drag coefficient, cd,
provides useful insights into hydrodynamic regimes in which one may wish to operate, given the
presumed morphology.  Figure 4 graphically provides such information.  General trends again show
that it is desirable to maximize <m> and minimize Sw.  Additionally, the presence of what appears to
be noise superimposed upon the ascending portions of the curve has actually been determined to be a
hysteresis structure, though captured with poor resolution.  The hysteresis results from K not mapping
one-to-one onto cd in the regime surrounding transition to turbulence.  If greater numerical resolution
were used, the presence of upper, lower, and middle curves would be evident for each morphology
characterization, corresponding to turbulent, laminar and transition regimes, respectively.  The upper
curve, not visible on the graph,  appears as a linear extension of the high cd asymptote back into the
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transition cd range.  The lower curve is clearly evident, being the curve upon which the tooth-like
structures are superimposed in Fig. 4.  Finally, the middle curve, again not visible,  has a slope less
than that of the lower curve, but greater than the constant-valued upper curve, and lies within an
envelope between the two on the graph throughout the transition cd range.  The  presence of the
hysteresis structure suggests that maximum benefit is derived by operating just beyond the transition to
turbulence for the prescribed morphology.

Though flow conditions are inextricably tied to the morphology characteristics, they are not
exclusively dependent upon these characteristics.  Failure to properly account for flow regime may 
introduce large errors in the coefficient predictions. Figures 5 and 6 show calculations of the bulk
permeability, K, resulting from the use of  flow regime independence [Eq.(22b)] and the formal
definition [Eq.(22a)] formulas, respectively.  For values of Rem clearly within the bulk laminar regime,
agreement between Eqs.(22a) and (22b) is approximately order-of-magnitude.  Recall that Eq.(22b) is
of asymptotic form, requiring large ratios of dch,2 to dch,1 for accuracy.  However, the data chosen for
discussion has diameter ratios of O(1).  The agreement between Eqs.(22a) and (22b) in the laminar
regime improves greatly for larger diameter ratios. Large disagreement between the formulae arise late
in the laminar regime, where the flow-regime independent formulae loses their predictive validity,
with a power law increase in the disagreement between the expressions through bulk transition and
throughout the bulk turbulent regimes.  Use of the analytical expressions [Eq.(22b)], or flow-regime
independent expressions in general, will result in gross error for regimes where Stoke's flow is not
occurring in each of the pores. The permeability data presented here, for both Eqs.(22a) and (22b), are
for admittedly  large diameters, better mimicking artificial media than naturally occurring materials.
The purpose of the study, however, is to identify and reproduce specific physical phenomena and
behavior.

The dimensionless longitudinal diffusion coefficient (25) further illustrates the resulting
transport coefficient enhancement derived from minimizing Sw for a given value of the bulk porosity,
see Fig. 7, as was evidenced for cd.  The profile corresponding to a large-pore fraction of 0.56 and <m>
= 0.399 exceeds the performance of both the <m> = 0.602 and the remaining <m> = 0.399 profiles for
equivalent Rem. The results shown in Fig. 4 are for the bulk laminar regime.

Upon re-examination of Eq.(11), it can be seen that for a continuous distribution over a certain
range of pore sizes, the longitudinal behavior of the velocity deviations and effective diffusivity
deviations will have no change in the longitudinal direction while a conservation of the solute is
adopted, at least for incompressible fluids.  This leads to the decreasing influence of the second and
third derivative expressions with respect to the longitudinal coordinate, included on the left hand side
of the equation. The result is a smaller effective longitudinal  coefficient than that obtained from Eq.
(25), and shown in Fig. 6, because only the conventional diffusion coefficient in the diffusion term in
the transport equation is accounted for.  Additionally, as previously mentioned, the metrics are
exaggerated.  Because a component of Eq. (24) translates like dch,i

4, parameter overestimation, as
compared to more consistent treatments, may occur.  However, the behavior observed for this classical
morphological model is derived from an analytically exact treatment.

Fluctuation values of the dimensionless longitudinal diffusion coefficient, Kc
$  , are shown for

two different diameter-ratios, d2/d1, in Figs. 8 and 9.  It is apparent that the inclusion of only a few
pores of the larger diameter creates appreciable deviation in the parameter values.  The results for the
smaller pore diameter-ratio (Fig. 8) indicate a transition in the dominating influence with varying flow
regime.  At low Re1, the longitudinal diffusion coefficient fluctuation value is clearly greater in the
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pores of larger diameter.  With increasing Re1,  Kc
$   values in both the small and large pores approach

zero.  With even greater Re1, the fluctuation values in the small pores dominate as the fluctuation
magnitudes increase for pores of both types.  The described evolution is evidenced by the changing
concavity of the curves shown in Fig. 8.  Increased pore diameter-ratio (Fig. 9) results in a change in
the low Re1 behavior.  The coefficient fluctuation values are consistently dominated by the small
pores, even at low Re1.  Again, increasing Re1 accompanies increasing fluctuation value magnitudes. 
Differences among the smaller and larger pore diameter-ratio curves emanate from the various flow
regimes potentially realized in pores of different types (e.g. laminar flow in the smaller pores,
turbulent flow in the larger pores).

Velocity fluctuation values, ai are given in Fig. 10.  As is expected, the larger pores
consistently have larger velocity fluctuation values for an imposed pressure gradient.  No distinct
change in behavior is observed at low  Re1, as was the case with  Kc

$  , though fluctuation magnitudes do
increase with Re1.  Increased d2/d1 serves to amplify the fluctuation values, but does not change the
character of the parameter behavior.  Once again, it can be seen that the introduction of only a small
number of large diameter pores can drastically change fluctuation values.

The current study has examined the most fundamental morphology models by excluding
consideration of pore network inter-connectivity, pore tortuosity, non-circular pore cross-sectional
geometries, non-percolating passages, pore roughness, multi-scale phenomena and various other
complexities which realistically mimic naturally occurring heterogeneous media.  However, even this
basic treatment is capable of extracting pertinent physical behavior and quite accurately models some
engineered porous media.

By varying the morphological descriptor values in space in either a prescribed or random
manner, the resulting fluctuations in the flow variables may be ascertained.  The accuracy of the
simulation will depend on the limits placed on descriptor values and the manner in which they are
allowed to vary, both subsequently dependent on the explicit porous material under study.  Literally,
an infinite number of realizations of the medium morphology, even for the simple model presented
here, are obtainable.  However, the morphology and metrics of the materials of typical engineering
interest are generally well known (in a statistical sense) or are obtainable with some experimental
effort.  Hence, correct descriptions can be identified and, subsequently, the desired transport
parameters can be obtained.  Additionally, a useful consequence of the current method is the ability to
solve the converse problem.  Given desired transport properties, a partial description of the necessary
morphology may be obtained.

RANDOM DISTRIBUTION PORE SIZE MORPHOLOGY.  The results of numerical simulation
of specific morphology closure statements described above for straight parallel pores with random
distribution are quite different qualitatively from the binary systems. One of the primary goals of this
simulation was to obtain momentum transport results which are exact solutions and for which exact
averaging procedures could be accomplished for a broad spectrum of flow regimes and pores
diameters. Results were generated for a specified range of diameters then compiled using an
appropriate  distribution to guide the sampling. The distributions of pore radii were taken as uniform
and normal. The results from our study of a binary set of pores were used as benchmark results for
comparison with the results of stochastic pore distribution analysis and their verification. 

The first series of calculations was made for a diameter range of 0.0 to 0.003 m including fine
pores and pores with diameters of 0.001 m order of magnitude. Fine pores include pores with
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diameters of 10-6 m and less. They were modeled for different flow regimes in different pores and for
various assigned pressure drops. A laminar flow regime in each pore was achieved by choosing a low
enough pressure drop. Nevertheless, even for a uniform flow regime and uniform pore radius
distribution, outcome functions sometimes reflect an extreme shift toward the left side of the result
ranges, see Figs. 11 through 15. The drag coefficient magnitudes are distributed over  seven orders of
magnitude, while the pore diameter extends only over three orders of magnitude.

Results for another range of pore diameters ( di = [0.003, 0.006] m) yielded velocity
distributions (Fig. 16) that bear significant resemblance to the initial diameter distribution only  when
in the same laminar flow regime. The drag resistance distribution shifts toward the larger values.   One
can reach the conclusion that when a given range of pore size and initial physical characteristics have 
some uniformity, the medium morphological characteristics determine the transport process
characteristics. This is true for only specific situations. Increasing the Eupor

-1 number made some pores
rendered as in the intermediate and turbulent regimes with changed distribution of the velocity values,
Fig. 17.

Increasing the pore diameter interval range increases the breadth of the spectrum of results.
The drag resistance distribution for a pore diameter range of di = [0, 0.03] m shows the extreme shift to
the left side of the velocity p.d.f. pattern, see Fig. 18. Even more evident is the  extremely low
(relatively) drag resistance in most of the pores. This means that large pore momentum transport
dominates. Meanwhile the same right shifting pattern is recognizable when the assigned pressure drop
is increased (as is the Eupor

-1 number ) and a bimodal distribution evident, see Fig. 19.
The velocity distribution in an artificially wide pore morphology, ( di = [0, 0.06] m )   explicitly

showed also two modes. Meanwhile, the drag resistance coefficient distribution demonstrates an
extreme left shift of the p.d.f., toward very low values due to high velocity rate in the larger pores with
transitional and turbulent regimes of flow. The same shift to the left is seen for the mass dispersion
coefficient distribution. The velocity distribution for this pore diameter range has the same clear
bimodal behavior as the velocity p.d.f. shown in Fig.19.

Fig. 20  summarizes the resistance coefficient ( Fanning friction factor) data for few SPPM
pore distributions:

a) uniform distribution in range (0,3]mm;
b) bi-pore morphologies with different numbers of second diameter pores, n2 = 103, 104, and     
105, d2 = 3mm, n1 = 1057534 (d1 = 3A10-4 m);
c) normal pore diameter distribution with the mean diameter dmean = 3/2mm and standard     
deviation F = 1mm. 

An experimental correlation for the drag resistance coefficient cd for SiC ceramic foam with porosity
<m> = 0.756 and specific surface Sw = 8058.6[1/m] obtained at the University of California, Los
Angeles (Travkin and Catton, 1997b) is also given  for comparison. One of obvious observations from
Fig. 20 is that in the laminar regime all the coefficient curves regardless of diameter distribution mode
lay lower then the Fanning friction factor law for a single tube (pore). 

Written in terms of  ( {Kc}f - Pepor ), as done in many studies see, for example, Carbonell
(1979), Levec and Carbonell ( 1985), and others, the results of present work (see Fig. 21) show
substantial disagreement with the results of other authors. While the comparison in Fig. 22 reveals 2 to
4 orders of magnitude difference between this work and  analytical general formulae developed by, for
example, Saffman (1959) and others, one needs to realize that compared are different dispersivity
coefficients while for quite different morphologies.  Saffman (1959, 1960) based his model on  a 
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random walk by fluid particles through the lattice of  randomly oriented straight pores of a diameter
such that  “ each step corresponding to passage through one pore, of variable direction and duration”.
Even such an artificial construction gave an approximate agreement when additional rules where
adopted,  as pore length l being  “ put equal to the average diameter of the particles composing the
porous medium”. The only morphological parameters  participating in the final expression for
longitudinal and lateral dispersion coefficients were  pore length l and radius a. The type of
dispersivity concerned in present work is one that valid in only fluid phase and in straight parallel pore
medium morphologies.

Yuan et al. (1991) estimated the thermal dispersion coefficient for a similar morphology, and
included longitudinal thermal dispersion in the solid phase. The dispersion coefficient  was written for
a combined one temperature SPPM model,  but the analysis was done using a two-temperature model
for the flow direction temperature distribution in both the straight pores and in the surrounding solid.
Including the solid phase heat transport greatly effected the magnitude of the overall thermal
dispersion coefficient resulting in its being reduced in magnitude sufficiently enough to compare with
various experimental results.  Yuan et al. (1991) reached the conclusion that -”Under certain
circumstances, heterogeneities are predicted to cause several orders of magnitude increase in the
thermal dispersion coefficient”. The current work yielded a similar conclusion.

Another interesting point is that declining values of {Kc}f at large Pepor > 105 can be explained
by the much lower turbulent dispersivity in a single straight pore (Taylor, 1953, 1954 ) than when a 
laminar regime with a lower Re numbers occurs in the same pore. No other correlation could predict
this effect. 

CONCLUSIONS 

Justification of the choice of calculation formulae used to determine flow and mass transfer
parameters for a porous media is both important and difficult. In most of the existing techniques for
determining heat and mass transfer parameters, linear equations and constant coefficients are used
while the superposition of errors due to experiment and intrinsic to the calculational formulae is
ignored.  Closure of mathematical models of diffusion processes in a heterogeneous media may result
in the use of a quasi-homogeneous method in complex situations.  In this method, the transfer process
is modeled as an ideal continuum with effective transport characteristics instead of the real
heterogeneous character of the porous medium.  In either case, the reliability of the coefficients largely
determines the reliability of the results.  In the present study, the governing equations are obtained by a
hierarchical modeling methodology, accompanied by an advanced averaging technique, developed and
described in earlier work.  The numerical work is derived from a capillary type morphology
description at the pore scale.  The elementary macrovolume morphologies considered are systems of
straight-equivalent channels with anisotropic features and random morphology fluctuations.  The
random morphology fluctuations are incorporated into the transport equations by means of randomly
varying morpho-convective and morpho-diffusive terms.  

Further simplifications of the governing equations and the chosen morphology allow results to
be obtained that show that the method has advantages over simple, deterministic Darcy law based
treatments with constant coefficients. The parameter Sw exerts great influence upon the bulk flow field,
through the drag coefficient, by the mechanism of fluid-friction.  The simple preliminary treatments
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are incapable of accounting for random variations of the solid medium and result in large magnitude
error if coefficients are not chosen to correspond to the bulk flow regime and morphology of the real
physical situation being modeled. 

The momentum and scalar transport equations involve additional terms which quantify the
influence of the medium irregularity.  Theoretical forms of these additional terms are reviewed for
both one- and two-dimensional cases in a porous medium morphology consisting of specified,
stationary distributions of a binary and random systems of straight, non-intersecting pores.  Important
physical behavior is extracted from the morphology model.  It is shown that slight manipulations of the
morphology descriptors can create large fluctuations in transport parameter values, signifying the
potential modeling errors incurred if particular features of the morphology are neglected. 
Hydrodynamic flow regime considerations also significantly effect the transport parameter values.  A
method for closure of the morpho-fluctuation terms in the governing transport equations is outlined. 
The method allows either the determination of expected transport parameters given a description of the
porous medium, or conversely, qualities of the porous medium given description of the desired
transport parameters. The objective of this modeling was to determine the impact of a random pore
distribution on averaged and fluctuation values of momentum and mass dispersion coefficient
distributions.

Exact modeling in each straight pore was combined using theoretical closure analysis for a
given morphology. Two kinds of pore diameter distributions were used: 1) two-mode regularly
distributed pore diameters;  2) uniformly distributed diameters in the range 0 to a few millimeters or
few centimeters and 3) normally distributed diameters.

These distributions resulted in dramatically different distributions of velocity, dispersion
coefficient and other characteristics. An analysis of statistical data modeled on exact solutions for
assigned capillary morphology was provided. It showed the tremendous importance of the lowest size
pore distribution phenomena. It was found that a negligible part of the overall momentum transport
goes through the smallest pores, yet the heat and mass transport through these pores is a large fraction
of the bulk transport due to their significant interface transport and enhanced transport peculiarities in
fine pores.
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