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ABSTRACT 

Volume Averaging Theory (VAT), an effec- 
tive and rigorous approach for study of trans- 
port (laminar and turbulent) phenomena, is 
used to model flow and heat transfer in porous 
media. The modeling is based on a simple 
pore level network. The primary difficulties in 
applying VAT to straight capillary networks, 
the many unknown integral and differential 
terms that  are needed for closure, are overcome. 
VAT based modeling of pore level transport in 
straight capillaries results in two sets of scale 
governing equations. One scale is the upper 
scale VAT equations which describe ensemble 
properties for flow and heat transfer in porous 
media. The other scale is the lower scale lami- 
nar and turbulent transport equations that rep- 
resent flow and heat transport in each straight 
pore capillary. It is how the unknown VAT 
terms in the upper scale equations can be es- 
t imated using the relationships between upper 
scale properties and lower scale properties. Ex- 
act closures and mathematical procedures are 
developed for the turbulent regime, extending 
the previous laminar regime work. Numerical 
results for turbulent and laminar transport in 
straight capillary porous media are shown in 
this paper. 

Nomenclature 

cp 
dh 
ds 

f 
? 

< f > I  

? 

k 

specific heat [J/(kg. K)] 
hydraulic dynameter, [m] 
interphase differential area in 
porous medium [m 2] 
internal surface in the REV [m 2] 
friction factor 

- A%1 fAal fdw, averaged over 

Af~f value f 

averaged over A t2 / in  a REV Af2 

= f - f ,  value f local morpho- 
fluctuation in a Af2y 
thermal conductivity [W/(mK)] 
averaged turbulent eddy viscosity 
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ksT 

kT 

m 

- 

N - 
- 

p - 
q - 

/~i - 
/ ~e  h - 

- 

- 

- 

T - 
U , W  - 

effective thermal  conductivi ty of 
solid phase [W/(mK)] 
turbulent  eddy thermal  conduc- 
t ivity [W/(mK)] 
porosity [-] 
averaged porosity [-] 
Total number  of pores 
Prand t l  number  [-] 
pressure [Pal 
heat  flux [W/rn 2] 
i th pore radius [m] 
Reynolds number  of pore hy- 
draulic diameter  [-] 
cross section flow area [m 2] 
i th pore cross section flow area 
[rn 2 ] 

specific surface of a porous 
medium OS,o/Afl [ i /m] 
t empera ture  [K] 
velocity in x,z-direction [m/s] 

Subscripts 

f 
i 

L 
8 

T 
w 

win 
wout 

fluid phase 
component  of turbulent  vector vari- 
able, i th pore 

laminar,  lower scale 
solid phase 
turbulent  
wall 
inner wall 
outer wall 

Superscripts 
,-~ - intrinsic value in fluid phase aver- 

aged over the  Af t f  
mean turbulent  quant i ty  

u - upper  scale 

Greek letters 
Af~ representative elementary volume 
( R E V )  

Arty pore volume in a REV [rn 3] 
Af2s solid phase volume in a REV [rn a] 

u kinematic  viscosity [m2/s] 
~o density [kg/m 3] 
~- turbulent  friction stress tensor 

[N/m 2] = -~u'w' 
~-~o wall shear stress [N/m 2] 

Introduction 
Volume averaging is a widely used technique 

in which a macroscopic m o m e n t u m  equation 
is derived from Navier-Stokes turbulence equa- 
tions by averaging over a representative ele- 
mentary  volume (REV). During the  averaging 
process, hydrodynamic  information from the 
pore scale is retained in the  form of unknown 
surface expressions and fluctuations tha t  can be 
determined experimental ly or derived exactly 
for simple pore structures.  

A popular  pore level model  used to s tudy the 
porous media  is the  network model. Network 
models use a series of interconnected nodes and 
bonds with dis t r ibuted sizes. In a network 
model  the  pore space is represented as a graph 
of connected sites. A common interpretat ion 
of this graph is tha t  the  sites correspond to 
pore bodies, and the  bonds  correspond to pore 
throats  connecting the  pore bodies. In prin- 
ciple, a network model  can replicate both  the 
geometry and topology of the  pore space, so 
that  flow through the  network is equivalent to 
flow through the  actual porous medium. 

The  parameters  tha t  dictate a network's 
geometry are its spatial d imens ion  (i.e., 2-D or 
3-D), grid pa t te rn  (which maybe regular or ir- 
regular), bond-size distribution, and coordina- 
tion number  (the value and whether  it is con- 
stant).  The  development  of a network model  
for flow in porous media  began with Fat t  (1956) 
who used an equivalent resistor network to cal- 
culate properties like capillary pressure, rela- 
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tive permeability, and resistance. Since then, 
numerous studies have been carried out with 
increasingly sophisticated rules to describe cap- 
illary equilibrium and simultaneous flow of flu- 
ids. of these studies, those by Goode and 
Ramakrishnan (1993), Thompson and Fogler 
(1997), Rieckmann and Keil (1997) and Thau- 
vin and Mohanty (1998) are of particular inter- 
est. 

To develop valid VAT equations, a straight 
capillary network is our starting point. It is a 
very simple network. There is any junction in 
this network. The advantage of this network 
is that  flow and heat transfer in each pore can 
easily be simulated. Using the results in each 
pore, the VAT equations can easily be verified 
and exact closure of the VAT equations can be 
developed. In this paper, the capillary mor- 
phology, shown in Fig. 1, is used as a morphol- 
ogy model for volume averaged network model 
development. Travkin and Catton (1999) ob- 
tained a two scale solution for the volume aver- 
aging theory (VAT) model of momentum trans- 
port in a simple case of straight capillaries. For 
heat transfer in a network morphology, the tem- 
perature field is not homogeneous. A two scale 
solution for energy transport is addressed in 
this work. This work is an extension of Travkin 
and Catton (1999) and Hu et al. (2001). 

The problem of lower scale heat transport 
in a bundle of straight capillaries is a conjugate 
problem. The analytical methods of solution of 
conjugated problems presented by Luikov et al. 
(1970) and Luikov (1974) are used in this pa- 
per for solving the lower scale conjugated con- 
vective heat transfer problems. Previous stud- 
ies have shown that  VAT models are effective 
for the study of upper scale heat transport in 
straight capillary morphology, see Travkin and 
Catton (1998), Zanotti and Carbonell (1984) 
and Yuan et al. (1991). The approach used in 
this paper, however, to formulate closure and 
Figure 1: Capillary morphology model of 
porous medium: a bundle of parallel pores em- 
beded in solid 

to find a solution of the current VAT problem 
is essentially different from the previous work. 

Momentum Transport 

The one dimensional straight pore morphol- 
ogy (SPM) shown in Fig. 1 ( Travkin and Cat- 
ton, 1999) is chosen to show how model equa- 
tions and consistent closure models based on 
VAT are developed for transport  of momentum 
in a porous media using a network model. For 
SPM, theoretical solutions for bulk velocity and 
dispersion coefficients can be obtained. 

Upper Scale Momentum Equation 

The VAT based 1-D momentum equation for 
flow in porous medium shown in Fig. 1 is 
Copyright © 2001 by ASME 



Oz (m) ('uT + ") ~ (1) 

- o ~  1 r -~ 
= ( m ) ~ - - + - - ] o  ~ds Oxj O:Af~ s,o 

fo Z 
where u r is the turbulent eddy viscosity. It 
is necessary to take the surface stress as three 
dimensional in the last term of the equation. 
Because the interface surface OS~ might locally 
be 3D and closure demands that  the local lower 
level features of OS~, be treated rigorously. The 
closure scheme for this equation is explained in 
Travkin and Catton (1999). 

Lower Scale Momentum Transport in Pores 
h

Based on the general scheme developed by ~
Travkin and Catton (1995, 1998), the instant 
velocity for the turbulent regime in straight, 
smooth, nonintersecting pores, is represented 
by 

U' u = ~ ( z , r ) +  (x,r,t) (2) 
! 

= ~ (~, r) + ~ (x, ~) + Vr (x, ~) + ~ (~,~,t) 

where 

~(~,~) 

and also 

1 f 
[ udt (3) 

~T J tT 

= ~ (X, r )  -~- U r (X,  T) 

~'r (~ ,~ )=  ~(~,~) 

N 

~(~,~) = ~ , s , / s ~  (4) 
i=1 

F
t

t

where k signifies turbulence induced compo- 
nents that  are independent of inhomogeneities 
in spatial upper scale morphology features 
and properties resulting from the multi tude of 
porous medium channels (pores), and r de- 
notes the fluctuation contribution due to the 
porous medium inhomogeneity. The relation- 
ship between the lower scale velocity and the 
upper scale velocity, and the relationship be- 
tween average velocity and fluctuation veloc- 
ity are shown in Fig. 2 in Travkin and Catton 
(1999). From that figure, it can be derived that 
the mean velocity in each pore i is 

27r fn~ ~ (~) - ~R~ ~ : d ~  (5) 

_ 2~ f~, (~+~)rd~ ~rR~ 
= ~ + a i  

 

i (r) 

and 

Y 
= 2uki(r) 1 -  ~ - ~  (6) 

= ~ 1 - 2  K + 2 a ,  1 -  

[ 1 ~i (r) = 2~ki (r) 1 - K, (7) 

or a two pore structure, when the average in 
he REV is defined over the averaging volume 

Af~f ---- Afar1 + Afar2 , the averaged velocity in 
he REV is given by 

U - -  
Aft: a:: a:~ (8) 
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For laminar flow in a single pore it can easily 

be shown that 

- 1 j[0 Ri -gki -- ~rR2 ~ ui (r) 2~rrdr (9) 

- 8#  ~zz R~ 

For turbulent flow in a single pore i with con- 
stant properties, the momentum conservation 
equation is 

rdr  r(Y+~T) dr J =~ ~x (10) 

The solution of Eq. (10) is initiated by regard- 
ing the pressure gradient as known and con- 
stant. The rest of the solution procedure fol- 
lows as 

w = - ~  2~ 2 (11) 

Re~- ~k,(2~) (12) 
I/ 

alp) 0.079 
2T~ 2R4 -~z Re °'25 fY- -  =2 -- =2 

Qsuki 2Q~uki (13) 

So 

1 1 

= = ~ki , (14) 

U k i  

1 

k2~, fI 
1 

2~ - ~  
-- " --0-.079 

(15) 
Solving Eq. (15) yields uki. 
If the inner variable y+, defined as 

y+ yU* ( (R4 -_r) u* L, ' (16) 

is introduced, then the velocity in each pore is 
of the form (Schlichting, 1979) 

~i (r) (17) 

=  '5.75lg/(1+0.4y+) 1.5(1 + ~)] 
1+2R~ J 

+7.8 [1 - ( - ~ 1 )  - y +  

where/~ is the radius of i th pore. The turbu- 
lent viscosity is given by 

O . 0 7 u ( y + - l l t h ( ~ f ) )  

( 1 - / ~ )  (1 + 2R~) (18) 

Heat Transfer Analysis for Network Model 

For heat transfer in the medium shown in 
Fig. I, the temperature field is not homoge- 
neous. The two temperature model developed 
in Travkin and Catton (1995) should be used 
as the upper scale governing equation. 

Upper Scale Governing Equations 

General statements for energy transport in a 
porous medium require two-temperature treat- 

ments. Travkin et al. (1993) showed that 
the proper form for the turbulent heat transfer 
equation in the fluid phase using K-theory one- 
equation closure with primarily I-D convective 
heat transfer is 
Copyright © 2001 by ASME 



~,,se: (m) ~OT: 
Oz 

= 0-7 (.~1 + k¢)-$;/i 

t, \ i :) 

L OT s 
+ E fti ~ ( k~ + ks) -5-g~ ~ " d s , 

(19) 

while in the neighboring solid phase, the corre- 
sponding equation is 

0 [ 0(rs)s] 
0--~ ( 1 -  (m)) {kT}s -~z J 

+ - ~ z  Ox  s 

0 d81] 

1 L o r s  --+ 
+ -A-~ s,~ k" ~ -5~ ~ " d s l 

O. 

(20) 

For laminar flow, the two-temperature en- 
ergy equation can be simplified to 

Oz 
o[  ko# 

Ox (~} :-O--Diz 

1 ~, +S-~ Ls~ OTs ki~-z/" 

(21) 

and in the neighboring solid phase, the corre- 
sponding equation is 

where 

0---~ (1 -<m) )  -O--~zJ 
0 k s rs d81 

Ox S~ 
1 f kOTs --> 

s - - "  ds~ 
Af~ Jos~ Oxi 

d-~s I ~ --d'~s 

(22) 

Lower Scale Governing Equations 

At the lower scale, the flow and heat transfer 
in each pore is homogeneous allowing the gov- 
erning equations to be simplified. One feature 
is different, spatially it is 2D. For convenience, 
the equations are written in cylindrical coordi- 
nates instead of Cartesian coordinates. 

Governing Equation in the Solid Phase In the 
solid phase, the two dimensional steady state 
conduction equation can be written as 

rOr \ --Or-r) +-~z \--O-Z} = 0  
(23) 
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The boundary conditions are 

r = Ri,  7~, = T~,~i~,{ (24) 

r = Rg + &, 7~ = Ts,~out, (25) 

where 6i means the thickness of the cylindri- 
cal layer around each pore where the temper- 
ature drops from T~,~i~ to T~,~o~t~. 7s,,,o~,t~ is 
a constant temperature outside the solid cylin- 
drical layer. By this we assume also negligible 
variations of heat flux at the external surface 
r : Ri + 6i. This acknowledges the lower scale 
exact problem where Bi  < 0.1. For conjugate 
problems, the boundary condition between the 
solid phase and fluid phase is equal tempera- 
ture and equal heat flux at the interface. So 

T:,I~:m = T~,I~=R, = Ts,win, (26) 

and 

- . - - ) .  

q si Ir=m 
- k OT~, 
- - ~ - 0 7 - 1 ~ : . ,  (27)  

k OT:, 
: q :,1.:~ : -  :-gj-~l.:~ 

Pore Level Turbulent Regime Equations 
In a cylindrical system, for fully developed heat 
transfer with constant fluid properties and neg- 
ligible viscous dissipation, the lower scale en- 
ergy equation for heat transfer in each pore can 
be written as 

m 

~{(r) raTs{ (x,r) (28) 
0x 

A solution procedure for Eq. (28) can be found 
in Mills (1995) 

The symmetry boundary condition is applied 
to Eq. (28) at the center line of the straight 
pore 

r = 0 ,  O T : ~ ( z ' r ) - o .  (29) 
Or 
The conjugate boundary condition is 

r:~ I~=R~ = r~, I~--R, = r s , ~ ,  (z)  
(30) 

and 

(31) 

This means that  the solid phase and fluid phase 
have the same temperature and the same heat 
flux at the interface. 

Relationship between lower and upper scale temperatures 
Figure 2 shows the relationship between the 
lower scale variables and upper scale variables. 
The notation used in the figure are explained 
in the following text. 

The average over the fluid phase within the 
REV is 

1 f~  Tfdw (32) <T:>: - :'~ n, 

= <~> {T}: = <~> }, 

and the average over the solid volume within 
the REV is 

1 £ Tsdw (33) (Ts}s- A 9  n~ 

= (1-<m)){T,} =(1-<m>)T, 

where {TI}/ -- Aa:I An Tld w and {Ts}. : 

1 fargo Tsdw are another definition for intrin- An8 
sic variable. The fluid temperature can be rep- 
resented by double, triple and quadruple de- 
compositions suited for VAT needs (Scherban 
et al., 1986; Primak et al., 1986). 

- -  T '  T] : T/+ (34) 

: ~,  (x, ~) + T}r (x,~) + T} (x,~,t) 

+ T } k ( x , r , t )  
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For turbulent flow 

T'fk (x,r,t)= T; (x,r,t) (35) 

Since pores are nonintersecting and it is as- 
sumed that  in each pore i, the temperature 
fields T A and T~ are independent of other fields, 
the problem can be simplified to 

Tf~(x,r) : 0  (36) 

and in each pore 

(37) 

T}~(x,r):Tf{(x,r ) (38) 

For each individual pore, the properties can be 
written as 

N 

Tfk(x) = E T / k ,  (x) S{/Sc~ (89) 
i = l  

where the mean cross section temperature is 
found from 

1 /A TA(x'r)dw (40) 

= - -  T A ds 
N ~ 

1 

= ~n~f2~rT,,dr 
with 

S~ : ~R~. (41) 
N 

S~ : ~S{ (42) 
i=1 

An exact profile of the temperature in each pore 
is given by 

A 

TA(x,r ) = Tf(x)+TA(x,r ) (43) 
A 

: Tfk (x) +T A (x,r). 
The temperature field will be represented by 
these components in each of the elementary el- 
ements of the REV. If bipore morphology (Fig. 
2) is taken a into consideration, the turbulent 
regime temperature in each pore of a bipore 
morphology with radius ri is given by 

Tf{ = TI + TA, i = 1, 2 (44) 

When the average in the REV is defined over 
the averaging volume A~ s : A~Sl +A~s2, the 
averaged temperature is given by 

-- 1 /z~an TAdw (45) Tf -- A g f  

1 
+---~f liar2 Ts2dw 

1 

where 

T~k~ -- ~ R I ~  T ~ - ~ .  2~d~ (46) 

-- 7rR~ ~S + TA rdr 

2 ~oR1~ = TI + R~ T~l~d~ 

= T s + b  I 

Following the same procedure, we can write 

= R-~2 £RI~. 
(47) 

The average of the fluctuation function within 
the REV is 

(% 
A~f ~n ~s2 

__ (TYt) (IE~251 + R~b2) (48) 
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1 

F L O W  ^ 

"rl.in = c o n s t  ~k 

^ 

T,, =1; + I~ ;,, 
"~I--T + T1 

T f l  ,w 

÷o~o /r.~ =~ +~, 

F L O W  ( ~ T w 2  

Tf,in = con. '  " _ (~ !_ ~ = 

x 

J 
REV 

? 
/ 

pore 2 

Figure 2: Temperature bulk and local evalua- 
tion in a single pore parallel capillary morphol- 
ogy model of porous medium 

It is obvious that 

( ~ }  = 0  (49) 
I 

So we can easily derive 

+ R b2 = o (50) 

Results and Discussion 

A porous media network approach is used 
where the lower scale transport equations are 
solved first because the lower scale equations 
have much simpler forms and some of them 
have theoretical solutions. When the lower 
scale equations are solved, their solutions can 
be used to solve the upper scale equation us- 
ing the relationships between lower scale vari- 
ables and upper scale variables. The upper 
scale equation solutions can be used to find 

t
V
e

m
s

l
W
a
o
s

a
e
t
e
g
r
p
t
s
p

t
(
E
v
f
p
c

a
e

a
e
t
s
p

T
e
n

he closure models for the upper scale network 
AT equations. Finally this approach can be 
xpanded to a general network study. 

At this stage a two pore structure is used as a 
orphology model for a preliminary numerical 
tudy. The parameters chosen here are the fol- 

owing: L = 300ram, R1 = 3ram,  R2 = 0 .5ram.  
ater with inlet temperature  Tj~  = 80 °C  is 

ssumed to be flowing through pores with an 
utside wall temperature  Ts,,,out = 20°C.  The 
olid phase is Aluminum. 

To prove that  upper scale VAT equations are 
ppropriate for the study of transport  phenom- 
na of capillary network, the lower scale equa- 
ions turbulent momentum and heat transport 
quations (10), (28) and (23) are solved for 
i ( r ) ,  TI~ (x, r ) and Ts~ (x, r ). These lower scale 
esults will be used to show the balance of up- 
er scale VAT equations and to find closures for 
hose unknown terms. Figure 3 shows the lower 
cale fluid phase and solid phase temperature 
rofile development in pore 1. 

When the lower scale equations are solved, 
he upper scale volume averaged variables 
~}, (TI} and (T~} can be calculated using 
qs. (8), (45) and (33). Figure 4 shows the 
olume averaged upper scale one dimensional 
luid phase temperature and solid phase tem- 
erature profiles along the flow direction. After 
alculating theseaveraged variables, the fluctu- 

tion variables TI and ~ used in upper scale 
quations could easily be calculated. 

Next, we estimate the unknown integration 
nd differential terms in the upper scale VAT 
quations so that the balance of both sides of 
he VAT equations could be checked. For in- 
tance, Table 1 lists all the terms in VAT fluid 
hase heat transfer laminar regime equation. 

Since all the variables in these terms listed in 
able 1 have been calculated, these terms can 
asily be estimated. Figure 5 shows the mag- 
itude of each term along the flow direction. 
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Solid Phase Temperature 
, Fluid Phase Temperature 

~ - ~  Tempera ture  

/o[OC] 3o ,o 

~i r i"profi le near  to the entrance o f  pore  

re profi le  near  to the exit of  pore  

Figure 3: Lower scale temperature distribution 
of a pore 

6o 

2 

30 

90 - -  Solid phase REV average temperature 
Fluid phase REV average temperature 

0 0.05 0.1 0.15 0.2 0.25 

x [m] 

0.3 

Figure 4: Upper scale voulume averaged tem- 
perature distribution 
10 
Term Expression 
N 

/ \ "7"70T[ 
left cpf~ ~m) U.O~ 
rightl  - -  [ ] 

right2 Cpf~f~[(m}{-Tf~}f] 
right3 ° [/,-~afoswTyds ] 

k -~-IZ. ds right4 Y o=~ fos  OT 

Table 1: Terms in VAT fluid phase heat transfer 
equation 

Physical mean 

convection 

conduction 

porous fluctuatio~ 

porous fluctuatio~ 

heat exchange 

The "+" and "-" signs in the legend mean the 
value of the corresponding term be positive and 
negative respectively. It is clear that the dom- 
inant terms are two that are normally seen in 
this type of modeling and one VAT based term 
that involves the fluctuations. The VAT type 
term rapidly decreases with tube length. This 
will be an important term if capillary junctions 
are addressed and they are short. 

Figure 6 shows the perfect balance of VAT 
fluid phase heat transfer equation. It demon- 
strates that approaches are valid for studies of 
transport phenomena in capillary network. 

As long as the closures for the upper scale 
VAT equations are available, the ensemble 
properties for flow and heat transfer in a cap- 
illary network are calculated directly from the 
upper scale VAT equations. 

S u m m a r y  and Conclusions 

A two scale heat transport conjugate prob- 
lem in capillary porous medium is addressed 
using a rigorous application of volume averag- 
ing theory. The use of two scale equations for a 
network problem is an effective contribution to 
model development for flow in porous medium. 
The two scale approach is carried out in two 
steps. The first step is to derive equations for 
lower scale transport in each straight pore. The 
second step is to use VAT equations for upper 
Copyr igh t  © 2001 by  A S M E  
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Figure 5: Estimation of terms in upper scale 
fluid phase heat transfer VAT equation 
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Figure 6: Balance of the upper scale heat trans- 
fer VAT equation in fluid phase 
11 
=========== 

scale transport in porous media and properly 
close them. The lower scale results are used 
to derive the closures for the upper scale VAT 
equations. 

The problem stated and treated in this pa- 
per is part of the problem of capillary net- 
work porous medium simulation. Transport 
in straight pore capillary morphology could be 
used as a model of membrane transport. The 
attractive feature of this morphology is that all 
parameters and characteristics can be evalu- 
ated precisely for both scales. This gives one 
the ability to develop a hierarchical analysis of 
momentum and heat transport that depends on 
morphological characteristics. 

A c k n o w l e d g m e n t  

This work was sponsored by the Depart- 
ment of Energy, Office of Basic Energy Sciences 
through the grant DE-FG03-89ERI4033 A002. 

R e f e r e n c e s  

Fatt, I., 1956, The network model of porous 
media: I, II, III, Trans. AIME, Vol. 207, pp. 
144-163. 

Goode, P. A. and Ramakrishnan, T. S., 1993, 
Momentum transfer across fluid-fluid interfaces 
in porous media: a network model, AIChE 
Journal, Vol. 39, No. 7, pp. 1124-1134. 

Hu, K., Travkin, V. S. and Catton, I., 2001, 
Two scale hierarchical capillary network model 
of heat and momentum transport in porous 
media, Proceedings of NHTC'01, 35 th National 
Heat Transfer Conference, June, 10-12, 2001, 
Anaheim, California. 

Luikov, A. V., Aleksashenko, V. A. and Alek- 
sashenko, A. A., 1970, Analytical methods of 
solution of conjugated problems in convective 
heat transfer, Int. J. Heat Mass Transfer, Vol. 
14, pp. 1047-1056. 

Luikov, A. V., 1974, Conjugate Convective 
Heat Transfer Problems, Int. J. Heat Mass 
Transfer, Vol. 17, pp. 257-265. 
Copyright © 2001 by ASME 



Mills, A. F., 1995, Heat and Mass Transfer, 
IRVIN. 

Primak, A. V., Shcherban, A. N. and 
Travkin, V. S. (1986), Turbulent Transfer in 
Urban Agglomerations on the Basis of Exper- 
imental Statistical Models of Roughness Layer 
Morphological Properties. In Transactions 
World Meteorological Organization Conference 
on Air Pollution Modeling and its Application, 
2, pp. 259-266, WMO, Geneva. 

Rieckmann, C. and Keil, F. J., 1997, Mul- 
ticomponent diffusion and reaction in three- 
dimensional networks: general kinetics, Ind. 
Eng. Chem. Res., Vol. 36, pp. 3275-3281. 

Scherban, A. N., Promak, A. V. and Travkin, 
V. S., (1986). Mathematical models of flow and 
mass transfer in urban roughness layer, Prob- 
lemy Kontrolya i Zaschita Atmosfery ot Za- 
gryazneniya, No. 12, 3-10.(in Russian) 

Schlichting, H., 1979, Boundary layer theory, 
7th, ed., McGraw-Hill, New York. 

Thauvin, F. and Mohanty, K. K., 1998, 
Network modeling of non-Darcy flow through 
porous media, Transport in Porous Media, Vol. 
31, pp. 19-37. 

Thompson, K. E. and Fogler, H. S., 1997, 
Modeling flow in disordered packed beds from 
pore-scale fluid mechanics, AIChE Journal, 
Vol. 43, No. 6, pp. 1377-1389. 

Travkin, V. S., Catton, I., and Gratton, L., 
1993, Single phase turbulent transport in pre- 
scribed non- isotropic and stochastic porous 
media, HTD Vol. 240, Heat Transfer In Porous 
Media, ASME, pp. 43-48. 

Travkin V. S. and Catton, I., 1995, A two 
temperature model for turbulent flow and heat 
transfer in a porous layer, J. Fluids Engineer- 
ing, Vol. 117, pp. 181-188. 

Travkin V. S. and Catton, I., 1998, Porous 
media transport descriptions - non-local, linear 
and non-linear against effective thermal / fluid 
properties, Advances in Colloid and Interface 
12
Science, Vol. 76-77, pp. 389-443. 
Travkin, V. S. and Catton, I., 1999, Nonlin- 

ear effects in multiple regime transport of mo- 
mentum in longitudinal capillary porous media 
morphology, Journal of Porous Media, Vol. 2, 
No. 3, pp. 277-294. 

Yuan, Z. G., Somerton, W. H., and Udell, K. 
S., 1991, Thermal Dispersion in Thick-Walled 
Tubes as a Model of Porous Media, Int. J. Heat 
Mass Transfer, Vol. 34, No. 11, pp. 2715-2726. 

Zanotti, F. and Carbonell, R. G., 1984, De- 
velopment of transport equations for multi- 
phase systems -III, Chemical Engineering Sci- 
ence, Vol. 39, No. 2, pp. 299-311. 
 

Copyright © 2001 by ASME 




