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Transport models for forced, single phase fluid convection are reviewed for non-uniformly and

randomly structured highly porous media.  Special attention is given to the evaluation of a two-

temperature energy model.  For means of comparison, a one-temperature, effective thermal

diffusivity model is developed, emphasizing local solid phase morphology using analytic techniques.

Random characteristics of the porous medium are simulated by the use of regular and unspecified,

pre-assigned solid phase morphologies.  An overall coefficient of drag resistance is determined by

implementing a multiple-regime superposition approach.  Coefficient models are evaluated using

the governing averaged transport equations set and solved numerically.  Variability of the

morphology descriptors is shown to potentially govern large fluctuations in transport parameter

values and distributions.  Results generally compare favorably among work by Koch and Brady;

Fand and Thinakaran; Adnani, Raffray, Abdou, and Catton; and Watanabe.
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  Description of the events occurring in a porous medium undergoing thermal and inertial

phenomena can often be accomplished with acceptable error using averaged values of physical

quantities.  Kovalenko (1991) argues that heterogeneous real disperse media may be treated as

continuous and the principal laws may be stated in terms of averaged quantities when the criterion
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is satisfied, where * is the observed or assumed micro-scale inhomogeneity and l is the macro-scale.

Koch and Brady (1985) note that the description of macro-transport, not transport by microscopic

process , is the "primary interest."  For such emphasis, assessment by averaged quantities is

acceptable.

  Treating a mechanical mixture as a homogeneous continuum entails the use of effective transport

coefficients.  Selection of effective transport coefficient models appropriate to the situation under

study is most relevant under such treatment.  Hence, "appropriate selection" is dictated by the matrix

microstructure, which greatly influences both the transport coefficient magnitudes and spatial

behavior of transport parameters.  The current study analyzes both parameter magnitude and

behavior involving a two-temperature energy statement, the values of the overall drag coefficient,

cd, the effective thermal conductivity for a one temperature, local thermal equilibrium energy

statement, keff, and the heat transfer coefficient at interphase boundaries for the two-temperature

energy statement, "# T.

  Consideration is given to steady, two-dimensional momentum and heat transfer within a two-phase

system.  A flat channel is fully occupied by an unconsolidated highly porous medium composed of

uniform packed spheres.  Immediate interests lie in the prediction of phenomena pertaining to the

case of large ks/kf ratios, thus the specific case and physical parameter values considered best

describe that of a steel spherical-bead matrix with incompressible air entering the interstices by

forced, non-Darcy convection.  Free convective heat/mass transfer processes are assumed negligible.

Interphase boundaries are impermeable to the fluid.  Wall channeling is determined to be

inconsequential for the current bulk process evaluation using criteria established in experimental

work by Fand and Thinakaran (1990).
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ANALYSIS

Morphology Description

Three packings with distinct characteristics are considered:

1.) Regular packing of solid spheres with assigned morphology characteristics (Fig. 1(a)),

2.) Simple cubic unit cell structure with solid spheres at the lattice nodes and exact expressions

for the morphology functions (Fig. 1(b)),

3.) Bi-porous structure (depiction of a representative capillary in Fig. 1(c)).

Rigorous descriptions of the morphologies employed for the three structures are offered in Gratton

et al. (1993).

The Governing Equations

  The statement for momentum exchange is obtained by the simplification of a generalized two-

dimensional development for flow in a randomly homogeneous porous medium confined to a layer.

Derivation of the generalized equation for developed flow in a monodisperse porous medium is

performed by stochastic averaging and further detail is offered by Travkin and Catton (1992b and

1995).  The consideration of a regular medium allows omission of the morpho-fluctuation terms,

which account for solid-microstructure deviation from an idealized configuration.  The

hydrodynamic problem is further simplified by the assumption of no interphase penetration and the

introduction of a closure process for the  momentum equation involving the mean developed

turbulent velocity averaged over the fluid portion of a representative elementary volume (Travkin

and Catton, 1992a,b and 1995).  The resulting governing statement for developed flow is given by,
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where the overall drag coefficient, cd, is defined

The mean turbulent eddy viscosity, K# m, is determined from

where l(z) is the turbulent scale function, defined by the assigned porous medium structure, C1 is

the turbulent exchange coefficient, and b(z) is the mean turbulent fluctuation energy function, which

satisfies the closure scheme

The turbulent scale function, l(z), is calculated as a function of morphology descriptors (see Travkin

and Catton, 1992 a and b).

  The heat transfer problem is governed by the generalized two-dimensional, two-temperature

statement for energy transport in a porous layer,   providing one governing equation in the fluid

phase and a second in the immobile, inpenetrable phase (Travkin and Catton, 1992b and 1995).  The

closure process given in work by Travkin and Catton (1992a,b and 1995) allows reduction of the

integral terms to differential terms with dynamic coefficients.  Restricting attention to regular media

further simplifies the problem in a manner analogous to that seen for the hydrodynamic statement.

The two-dimensional governing equation in the fluid phase subsequently assumes the form,
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where (x,z) 0 )Sf , and becomes the following in the solid phase

when (x,z) 0 )Ss.  The thermal eddy conductivity, K# T, for Eq. (6), is determined

valid for PrT • 1.  For treatment under a local-thermal equilibrium assumption, a simplistic energy

model is governed by a one-temperature equation for a continuum with assumed homogeneity and

effective thermo-physical properties,

which is effective over the entire domain (x,z) 0 )S.  The effective properties, Deff and cp, eff are

defined
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  Equations (2), (5), (6), and (7) are subjected to the following boundary conditions

corresponding to constant heat flux, hydrodynamic no-slip, and no variation in the magnitude of the

turbulent fluctuation energy at the wall.  Symmetry conditions for all profiles are imposed at the

channel mid-plane.  Use of the one-temperature model (Eq. (9)) merely requires the use of boundary

conditions similar to those used for the fluid-phase energy equation in the two-temperature statement

For means of comparison with the one-temperature equation results, an equivalent local temperature

is defined for the two-temperature system by volume fraction weighting 

The Overall Drag Coefficient
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  Various models and correlations are offered in determination of the overall drag coefficient, cd,

used in the hydrodynamic equation (Eq. (2)).  Travkin and Catton (1992a and b) discuss the

applicability in the bulk laminar regime of a commonly used experimental relationship 

for the pressure drop in packed beds, yielding a theoretical drag coefficient approximation for

constant or large-scale nonuniform porosity

where f is the hydrodynamic resistance coefficient for packed beds taken from experimental

correlations.  The sensitivity of Eq. (15) to the variation of, at minimum, the morphology functions

m and Sw is noted.  Consideration is now given to calculation of cd in the combined and turbulent

regimes by similar treatment.

  Watanabe (1989) suggests a formula for the overall drag resistance of a packed bed consisting of

spheres

where  cd, sph is the coefficient of drag resistance for a single isolated bead of diameter dp.  To

implement Eq. (16), a particle Reynolds number (ReR) dependent family of correlations is assembled

from a review by Boothroyd (1971) to approximate the mean drag resistance (cd,sph) over a single,

isolated sphere in various flow regimes.  The various correlations for cd,sph and the respective ReR

ranges of usage are provided in Table 1.



8

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Flow Regime Expression for the Particle Drag Coefficient

ReR  # 0.2

0.2 < ReR  # 3.0

3.0 < ReR < 400

400 # ReR # 500

500 < ReR < 2@105

ReR $ 2@105

 

Table 1.  Expressions and ranges of validity used to determine the drag coefficient for a
single, isolated sphere.

Equations (17)-(22) provide an effective means of calculating the flow resistance for packed beds

when combined with Watanabe's correction (Eq. (16)).

  Additional empirical expressions may be used to close the hydrodynamic equation (Eq. 2).  Table

2 provides a brief summary of the remaining globular morphology drag coefficient models used in

the analysis.  For spherical obstacles, the Reynolds number based upon characteristic pore size is

defined

Equation (23) is used to define the parameter Rech used in Eqs. (24), (25) and (26).  Use of Eq. (23)
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(24)

(25)

(26)

(28)

in lieu of the Reynolds number originally defined by Klenov and Matros (1990) results in the

modified form given by Eq. (25).  The Klenov and Matros (1990) formula is experimentally

determined for 0.3 # <m> # 0.4 and O(2) # Rech  # 1700 for spherical particles.

Relation Expression for the Overall Drag Coefficient

Ergun (1952)

Klenov and Matros (1990) 

Fand and Thinakaran (1990)

 

Table 2.  Additional expressions used to determine the overall drag coefficient for sphere
packed beds.

  Correlations are presented by Fand and Thinakaran (1990) for randomly packed cylinders

enclosing solid matrices composed of uniform spheres, valid over the range of Reynolds numbers

 

whereby the modified friction factor, f', is given by

Manipulation of Eq. (28), using Eqs. (14), and (23) provides the alternate form of Fand and
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(31)

(32)

Thinakaran's (1990) empirical correlation for f in terms of Rech which is presented in Eq. (26).  The

coefficients A and B in Eq. (26) are flow regime dependent (e.g. Darcy, Forchheimer, turbulent),

whereupon the reader is directed to the reference for the determined numerical values.

  Progression to capillary channel models extends the number of available formulae for cd.  For a

tube morphology consisting of straight circular channels of equivalent diameter, Travkin and Catton

(1992a and b) show that

If it is assumed that the characteristics of the path through the voids in the interstices of neighboring

spheres have equivalent expression in a system of straight parallel smooth tubes, Nikuradse's (1950)

formula may be used

Should the added effects of wall roughness in the tubes better simulate those corresponding to the

morphology under consideration, then Nikuradse's (1950) formula for rough tubes provides

For Eq. (31), dch is defined

rendering the general definition of Rech for Eq. (30), in lieu of the more specific form used hitherto

(Eq. (23))
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  Expression of cd by means of Eq. (3) presupposes knowledge of micro-scale phenomena.  Existence

of experimental work quantifying boundary-layer characteristics at interphase regions within porous

media is unbeknownst to the authors.  Furthermore, little work has been done in quantifying the

relative contribution of form drag to the overall resistance in porous media.  Fand et al. (1987) note

the absence of hitherto published work upon the subject of flow resistance in porous media which

distinguish between laminar and turbulent Forchheimer regimes, citing their original work as

"particularly interesting" upon that basis.  Their experimental findings for a cylindrical tunnel with

random packings of spheres include the observation of a laminar Forchheimer regime, 5 # ReR #

80, a transition Forchheimer regime, 80 < ReR # 120, and a turbulent Forchheimer regime, ReR >

120.  The foregoing allow approximate treatment of Eq. (9) for the combined and turbulent regimes

if the portions of the fluid-solid interface experiencing laminar, transition and turbulent boundary

layer or recirculatory flow can be identified.  Assuming that the near-wall flow can be characterized

in such a manner, Eq. (3) acquires the form 

 

The relative contributions of form and friction drag in flows through monodisperse, unconsolidated

porous media are discussed in Gratton et al. (1993).

  The drag coefficient for the bi-porous medium assumption is obtained by the linear superposition

of the Nikuradse (1950) rough tube formula (with an assigned roughness height hr =dch /10) and a

pressure drag component relationship (Gratton et al., 1993).  Calculation of the pressure drag term

is accomplished using a correlation by Tsuji et al. (1985) for a bi-porous medium consisting of

spherical inclusions in cylindrical conduits



12

(35)

(36)
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where " = 2.58 and $ = 0.75.  Details are offered by Gratton et al. (1993)

The Effective Thermal Conductivity

  A substantial amount of literature is available containing methods to formulate the effective

thermal conductivity in porous media for use in conjunction with energy equations assuming local

thermal equilibrium.  Less attention, however, is given to methods of determining the lateral

component of the thermal conductivity, keff, in systems with large ks/kf ratios and high void fractions.

Adnani et al. (1989) suggest

where k0 is the effective stagnant thermal conductivity for the packed bed.  Experimental data from

Adnani et al. (1989) shows that for metal particle/gas systems, with ks/kf . 1410, the stagnant term

is found

  Koch and Brady (1985) find the overall conduction in a fixed bed to be the linear combination of

contributions from the molecular conduction, the solid/fluid differences in conductivity, and the

effects arising from convection.  The authors develop, by means of asymptotic analysis, particle

Peclet number dependent expressions for the transverse component of the effective thermal

conductivity in media with low solid volume fraction
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(38)

(39)

(40)

(41)

where Per is the Peclet number founded upon particle radii,

and Pek is the Peclet number with respect to the Brinkman screening length,

A second Per regime requires calculation of the effective thermal conductivity by
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(43)

(44)

Within the interval

keff is described

The last of the Koch and Brady formulae is expressed

  Alternately, keff may be evaluated as a linear combination of contributions from molecular diffusion

in both the solid and fluid phases, and turbulent dispersion in only the fluid phase.  If transport

properties are viewed as the volume-fraction weighted influences of the independent contributions,

an appropriate formulation is

The Local Heat Transfer Coefficient 

Calculation of the void averaged heat transfer coefficient, "# T, necessary for an energy statement of

the form given in Eqs. (6) and (7), is performed using assorted formulae.  Expressions used to obtain

the heat transfer coefficient in this study are presented in Table 3.
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(45)

(46)

(47)

(48)

Relation Expression for the Heat Transfer Coefficient

Aarov et al. (1979)

Kokorev et al. (1987)

Kokorev et al. (1987)

Heat Exchanger

Design Handbook 

(1983)

 

Table 3.  Expressions used to determine the heat transfer coefficient for sphere packed
beds.

Aarov et al. (1979) developed an equation for use in the near-wall region in granular beds.  Thermal

convection from the wall to the fluid in the vicinity of the wall is described by Eq. (45) in the range

  Kokorev et al. (1987) present a correlation between drag coefficient and heat transfer coefficient,

given by Eq. (45) for turbulent flow in a porous medium consisting of spherical beads, granular

constituents or fibrous material.  Additionally, Kokorev et al. (1987) introduce a specific form of

Eq. (46), suggested for 10 # Rech # 106 and given by Eq. (47).  The last of the formulae considered,
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Eq. (48), is a correlation highly dependent upon local morphological and flow quantities (Heat

Exchanger Design Handbook, 1983).

Implementation and Numerical Solution

  The governing equations are non-dimensionalized as presented in Travkin and Catton (1992b).

Solutions to the equation set are obtained utilizing a finite difference scheme for non-linear grid

spacing and discontinuous coefficients as described in Travkin (1981, 1984, 1985 and 1987).

Solutions of the equation set are obtained on an IBM 3090.  

  Numerical solution of the set of equations is performed using the presented models for the overall

drag coefficient, the effective thermal conductivity for Eq. (9) and the heat transfer coefficient for

Eqs. (6) and (7).  Solutions are obtained for both the unspecified, constant porosity and the simple-

cubic local morphology descriptions.  The effects of a bi-porous solid medium upon the transport

processes are approximated in the numerical study through their impact on the hydrodynamic field

by the usage of Eq. (35) with both the constant and periodic morphology characterizations.   The

channel boundary drag coefficient values are determined by a method independent of the resistance

model chosen to avoid the potential for singularities due to zero wall velocity.  Because current

interests are focused upon an air/steel system for the fluid/solid combination, the conductivity ratio,

ks/kf = 1490 is appropriately chosen.

RESULTS  AND  DISCUSSION

The Overall Drag Coefficient and the Velocity Field

  Distinct differences among the capillary and globular models are observed for both the unspecified

and simple cubic morphologies at dp/h = 0.05 and x/h = 3.0.  Figure 2(a) illustrates local drag

coefficient profiles over one-quarter of the layer corresponding to a uniform void fraction (<m> =

0.8) for the eight models.  The Nikuradse formulae predict approximately two orders of magnitude

below the globular models, which is consistent with the greater flow resistance offered by solid

obstacles as compared to straight channels.  The equations suggested by Boothroyd (1971) (Eqs.

(17)-(22)), when not corrected for packed bed applications with Watanabe's expression (Eq. (16)),
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slightly overpredict the flow resistance in comparison to the remaining globular models.

  The more detailed local description of the layer's local morphological characteristics in the case

of the cubic geometry illustrates the effects of local structure variation upon the models.  The cubic

yields m0 = 0.48.  Again, results are monitored at dp/h = 0.05 and x/h =3.0.  The capillary resistance

models differentiate themselves from the globular models by comparative underpredictions of

anywhere from 2 to 4 orders of magnitude.  Though the uncorrected Boothroyd suggestions  are in

better agreement with the remaining  globular model averages than in the instance of an unspecified

local structure (<m> = 0.8), they are incapable of capturing the local value oscillations owing to the

absence of any explicit morphology dependence.  Watanabe's correction, however, brings the single-

sphere models into strict agreement with the remaining globular expressions for the cubic lattice

morphology.  Nikuradse's rough tube formula, aside from being physically imprecise for the specific

application, poses numerical problems related to small values of local void fraction and the inverse

natural logarithmic dependence of the formula.  The problems with the Nikuradse formulae give

even greater credence to the necessity to properly account for microstructural effects by the choice

of a representative model of the medium and appropriate coefficient models. 

  Figure 3(a) displays velocity profiles corresponding to the respective drag coefficient models for

the case of constant void fraction (<m> = 0.8) and dp/h = 0.05.   Again, the monitoring line is located

at a dimensionless longitudinal distance of 3.0 for all eight resistance models.  The capillary

(Nikuradse) models tend to overpredicit the bulk velocity and the single sphere models predict

conservatively when compared to the globular models.  Though approximate in its present form, the

multiple contribution approach (superposition of Eqs. (31) and (35)) serves to bring the capillary

models into agreement with the experimentally determined globular expressions for packed beds by

modifying the straight tube assumption to that of a bi-porous medium comprised of capillary tubes

with included spherical obstructions (Fig. 1(c)).  The agreement among the globular and bi-porous

drag coefficient expressions persists when viewed as a function of the Reynolds number or the

dimensionless pressure gradient.  Figure 3(b) shows the variation of the mean drag coefficient, cd,0,

with respect to ReQ.  The most notable feature is the constancy of the multiple contribution

formulation, caused by the choice of Nikuradse's rough tube formula (which is merely a function

of geometric parameters) for c#d.  Order of magnitude accuracy is maintained through the combined

and well into the turbulent regions among the Klenov and Matros, Fand and Thinakaran, Watanabe
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and bi-porous results.  

  Figure 4(a) illustrates the non-dimensional velocity profiles in the lower quarter-channel for the

case of  the cubic geometry (m0 = 0.48) and dp/h = 0.05 at a dimensionless longitudinal distance of

3.0.  With the exception of the Boothroyd and Nikuradse rough tube formulae, variability of the

resistance values is manifested as oscillatory velocity fields.  As with the constant porosity case, the

capillary and globular models clearly distinguish themselves, as do the essentially uniform profiles

associated with the Ergun, Nikuradse rough tube and uncorrected Boothroyd formulae.  Figure 4(b)

shows that the multiple contribution approach predicts mean drag coefficient values of the same

order of magnitude and displays similar flow regime dependence as three of the globular models

over a large range of ReR for the cubic lattice.

The Effective Thermal Conductivity and the Temperature Field

  Figure 5 displays dimensionless effective thermal conductivity results for <m> = 0.8, again

assigning dp/h = 0.05.  Values are monitored at a dimensionless longitudinal coordinate of 3.0.  The

Adnani et al. model (Eq. (36)) and Eq. (44) give order of magnitude agreement, while the pair

distinguish themselves from the  Koch and Brady model (Eqs. (38)-(43)) by an order of magnitude.

The Koch and Brady model shows a near-wall increase in the predicted coefficient values.  The

increase arises from the regime where keff goes as 1/Pek (Eq. (41)).  Conversely, the Adnani et al.

model's near-wall descent of the calculated values is attributable to its linear fluid velocity

dependence. 

  Figure 6 illustrates results for the case of cubic geometry, with the same boundary conditions and

geometric parameters as given above, except m0 = 0.48.  The Koch and Brady and Adnani et al.

formulae respond differently to porosity variation.  The Koch and Brady formulae are dependent

upon solid fraction (1 - <m>) and return the highest values where <m> is of lowest value, despite

small Per in regions of low <m>.  The Adnani et al. equation includes a convective influence term

which is dependent upon the Darcy velocity, returning the highest values in regions of maximum

void.  Though Eq. (44) makes use of layer averaged porosities, minor oscillations are introduced by

means of the turbulent eddy diffusion term, Df cp,f K# m, which depends upon the turbulent scale and

the mean turbulent fluid velocity, both very sensitive to the microstructure.  However, the
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oscillations are dwarfed in comparison to the magnitude of the solid contribution, especially for the

moderate m0 used.

  Figure 7 provides the corresponding dimensionless temperature profiles for <m> = 0.8, dp/h = 0.05,

a dimensionless longitudinal station of 3.0, and Q0 = 20 [W/m2].  The curves associated with the

Koch and Brady, Adnani et al., and Eq. (44) models are identical, as is the weighted temperature

(Eq. (13)) profile from the two-temperature model results associated to the use of Eq. (46) for the

turbulent heat transfer coefficient.  Agreement among the one-temperature model profiles (Eq. (9))

is largely attributable to the manner in which Deff and cp,eff are employed and the dominating

influence of the solid contribution to energy transport.  Figure 8 gives the non-dimensional mean

effective thermal conductivity as a function of Peclet number. The Koch and Brady and Adnani et

al. formulae keep roughly one order of magnitude difference over a large range of Pe.  Equation (44)

is effectively constant due to the dominant influence of the solid-side (steel bead) heat transfer as

contrasted with the turbulent dispersion contribution.  

  Despite the disagreement among the average values returned by the three effective conductivity

models, the temperature profiles for the simple cubic morphology case are identical in the bulk,

varying only in the near-wall region (Fig.9(a)) under the conditions m0 = 0.48, dp/h = 0.05, x/h = 3.0,

and Q0 = 20 [W/m2].  All of the one-temperature treatments underpredict with respect to the two-

temperature model.  Unlike the case of the unspecified morphology (Fig. 7), the boundary

temperature gradients vary drastically among the one-equation models when used with a local

morphology description.  The oscillatory nature of the effective conductivity models is not

appreciably imparted upon the temperature fields, a severe limitation imposed by the use of the one-

temperature equation.  Figure 9(b) displays the weighted temperature  (Eq. (13)) resulting from the

two-temperature model for the same physical situation.  The oscillatory nature of the temperature

field is captured, though less pronounced than if either the solid or fluid phase temperatures

predicted by the two-temperature model are viewed independently.  Additionally, there exists a

predicted temperature discrepency of approximately 10 dimensionless degrees throughout the layer

between the one- and two-temperature analyses.  Explanation of the magnitude disagreement

between the one- and two- temperature models, especially for large ks/kf ratios, is offered in Travkin

and Catton (1995).  Behavior of the dimensionless layer-averaged effective conductivity values,

when used with the simple cubic morphology, over a range of Pe is given in Fig. 9(c).  The Koch
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and Brady model predictions remain roughly unchanged as compared to the unspecified morphology

case, while the magnitudes of the averaged values from the Adnani et al. model and Eq. (44) show

a one-to-two order of magnitude increase over the unspecified morphology consideration over a

range of Pe.

The Local Heat Transfer Coefficient

  Figure 10(a) displays layer averaged turbulent Nusselt number values as determined by the

Kokorev et al. formulae (Eqs. (46)-(47)) and Eq. (48) for the periodic morphology consideration

with the physical situation identical to that modelled in the effective conductivity trials.  Wall values

calculated by the Aarov et al. model (Eq.(45)), are not displayed.  The value cd used in Eq. (46) is

determined using the Klenov and Matros expression (Eq. 25).  The general form of the Kokorev et

al. formula shows a minor indentation at local maxima, as does Eq. (48).  The inflections are induced

by local morphology variations through the parameter dch in the case of Eq. (46) and a vanishing

fluid velocity magnitude in both instances within regions of  <m> • 0.  Equation (47) shows little

sensitivity due to the use of averaged quantities.  The fluid temperature profiles associated with the

heat transfer coefficient models (Fig. 10(b)) are similar in the bulk, with the greatest differences

among the models appearing in channel boundary regions.  The variation of the temperature

distributions results in dissimilar gradients at the channel boundary.  All three models do contribute

to the capture of oscillations in the fluid temperature field.  Figure 11(a) illustrates the behavior of

the mean turbulent Nusselt number over varying Peclet number for the constant porosity regular

morphology.  The figure provides insights concerning the relative contributions of turbulent

convection and turbulent eddy conduction.  At high porosity, the latter takes an increasingly

influential role, accounting for the reduction in NuT observed for particle Pe above 100.  At moderate

m0, no such decline is observed over most of the same range of Pe (Fig. 11(b)).  Additionally, the

sensitivity of the Kokorev et al. formula to the choice of drag coefficient model is made obvious.

The relative difference in the magnitudes of NuT between Eqs. (46) and (47) for both morphology

considerations is maintained, if not increased, over the Pe ranges considered.  The magnitude

difference is maintained explicitly through the parameter chosen for cd, and implicitly through the

fluid velocity magnitude.  Again, failure to properly account for matrix microstructure can severely
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effect the reliability of the results because of the implicit morphological sensitivities of the

expressions.  

CONCLUSIONS

  Turbulent transport equations are solved numerically in two dimensions for single-phase

convective momentum and heat transfer in a flat channel.  Both a one-temperature and a two-

temperature energy statement are employed to determine the heat transfer.  The transport equations

are found to be sensitive to both the type of morphology description and the precision of the

transport coefficient models.

  The coefficient models for either the drag coefficient, effective thermal conductivity or heat

transfer coefficient  predict with varying magnitude and local behavior among themselves for

identical physical situations.  Regarding the drag coefficient, the capillary and globular models are

shown to provide estimates which may vary by more than an order of magnitude, resulting in similar

disparities in the predicted velocities.  A multiple contribution formulation for the overall drag

coefficient is capable of modifying the capillary structure model to that of a bi-porous medium such

that better agreement with the globular predictions is obtained.  Differences among the effective

thermal conductivity models used in the one-temperature statement and the heat transfer coefficient

models used in the two temperature statement severely impact the calculated temperature gradients

at the channel boundaries in most cases.

  Differences are also observed between the one- and two-temperature energy equations.  In the bulk,

the local thermal equilibrium statement proves somewhat insensitive to the morphology description

and the effective conductivity model as a result of the large ks/kf ratio employed.  The one-

temperature model shows excellent agreement with a weighted temperature from a two-temperature

energy statement at high void fraction, mediocre agreement at moderate void fraction.

  The effects of providing a locally detailed morphology description in the case of the simple cubic

geometry incorporate both similarities and differences as compared to the commonly employed

uniform, unspecified morphology description.  The general Re (or Pe) dependent behavior of the

layer averaged drag coefficient and effective thermal conductivity exhibits little variation.  However,

local behavior among the drag coefficient, effective thermal conductivity or heat transfer coefficient
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models is diverse between the simple cubic and unspecified morphology characterizations.

Additionally,  differences between the two morphologies are observed in the general behavior of the

layer averaged Nusselt number over a range of Pe, though the large porosity value chosen for the

unspecified morphology is thought to contribute to this dissimilarity.

  The necessity for adequate description of morphological and phenomenological effects by the

careful choice of governing equations and transport coefficient models is evident for modeling

transport processes in porous media.  However, the descriptive capabilities of a particular coefficient

model are often limited or the coefficient model assumes an over-simplified morphological structure.

The multiple contribution approach is capable of partially resolving such problems.  Additionally,

at low and moderate void fractions, a two-temperature energy statement not only predicts

temperatures of dissimilar magnitude, but provides superior local resolution of the scalar field as

compared to a one-temperature statement.
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NOMENCLATURE 

a thermal diffusivity [m2/s]

b , mean turbulent fluctuation energy [m2/s2]
C1 constant in Kolmogorov turbulent exchange coefficient correlation [-]
c#d mean skin friction coefficient over the  turbulent area of MSw  [-]
cd mean drag resistance coefficient in the REV [-]
cd, sph drag resistance coefficient upon single sphere [-]
cd, 0 mean drag coefficient in the layer [-]
cdp mean form resistance coefficient in the REV [-]
cFL mean skin friction coefficient on the REV laminar region [-]
cp specific heat [J/(kg K)]
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dch character pore size in the cross section [m]
dp particle diameter [m]
f hydrodynamic resistance coefficient [-]
fl turbulent length scale [m]
g acceleration due to gravity [m/s2]
H height of the channel [m]
h = H/2,  half-width of the channel [m]
hr pore scale microroughness layer thickness [m]
MSw internal surface in the REV [m2] 
K# m turbulent eddy viscosity [m2/s]
K ST thermal conductivity of solid phase [W/(m K)]
K T turbulent eddy thermal conductivity [W/(m K)]
Kw similarity number in eddy viscosity boundary condition [-]
keff effective thermal conductivity [(W/(m K)]
keff, 0 mean effective thermal conductivity in the layer [(W/(m K)]
kf fluid thermal conductivity [W/(m K)]
ks solid phase thermal conductivity [W/(m K)]
k0 stagnant term, effective thermal conductivity [W/(m K)]
l turbulence mixing length or molecular scale [m]
m local porosity [-]
¢ m ¦ averaged porosity [-]
m0 mean porosity in the layer [-]

NuT , turbulent Nusselt number [-]

NuT,0 mean turbulent Nusselt number in the layer [-]
Pe , particle Peclet number [-]

Per particle radius Peclet number (Eq. 39) [-]
Pek Brinkman screening length Peclet number (Eq. 40) [-]
Pr =</af, Prandtl number [-]
PrT =Km/KT, turbulent Prandtl number [-]
p pressure [Pa] and pitch in regular porous 2D and 3D medium [m]
Q0 channel boundary heat flux [W/m2]
Rech Reynolds number of pore  hydraulic diameter [-]

ReR ,  particle Reynolds number [-] 

Sw specific surface of a porous medium   MSw/)S [1/m]
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SwL portion of specific surface bounding laminar flow [1/m]
Swm mean specific surface [1/m]                                    
Swp = Sz/)S [1/m]      
SwT portion of specific surface bounding turbulent flow [1/m]
T temperature [K]
Ta reference temperature [K]

Tm , characteristic convective fluid temperature across the porous layer [K]

Tw wall temperature [K]
T0 mean temperature in the layer [K]
u velocity component in x direction [m/s]
u0 mean velocity in the layer [m/s]

um , characteristic velocity in the layer [m/s]

u*rk friction velocity [m/s]

x horizontal coordinate component [m]
y        lateral coordinate component [m]
z vertical coordinate component [m]

Subscripts

f fluid phase
L laminar
r roughness
s solid phase
T turbulent

Superscripts

^ fluctuation of quantity about intrinsic average due to medium irregularity

Operators
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~

°

<>f

<>s

<>  ' <>f + <>s

Greek Letters

"# T averaged heat transfer coefficient over MSw  [W/(m2 K)]
"# T,0 mean heat transfer coefficient across the layer [W/(m2 K)]
"# T,m , characteristic layer heat transfer coefficient [W/(m2 K)]

"w heat transfer coefficient at the wall  [W/(m2 K)]
* micro-scale inhomogeneity [m]
8 friction coefficient in tubes [-] 
< kinematic viscosity [m2/s] 
D density [kg/m3]
Fb turbulent coefficient exchange ratio K# m/Kb [-] 
FT turbulent coefficient exchange ratio K# m/K# T [-]
)S representative elementary volume (REV) [m3]  
)Sf pore volume in a REV [m3] 
)Ss skeleton volume in a REV [m3]   

REFERENCES

  Aarov, M. A., Todes, O. M. and Narinskii, D. A., 1979, "Apparatuses with Stationary Granular



26

Bed," Chemistry, Leningrad, p. 176.

  Adnani, P., Raffray, A. R., Abdou, M. A. and Catton, I., 1989, "Modeling of Effective Thermal
Conductivity for a Packed Bed," Department of Mechanical, Aerospace, and Nuclear Engineering,
University of California, Los Angeles, UCLA-FNT-29, 50 pgs.  (Mimeographed.)

 Boothroyd, R. G., 1971, Flowing Gas-Solids Suspensions, Chapman and Hall Ltd., London, 1971.

  Ergun, S., 1952, "Fluid Flow Through Packed Columns," Chemical Engineering Progress, Vol.
48, pp. 89-94.

  Fand, R. M., Kim, B. Y., Lam, A. C. and Phan, R. T.,  1987,"Resistance to the Flow of Fluids
Through Simple and Complex Porous Media Whose Matrices Are Composed of Randomly Packed
Spheres," ASME Journal of Fluids Engineering, Vol. 109, pp. 268-74.

  Fand, R. M. and Thinakaran, R., 1990, "The Influence of the Wall on Flow Through Pipes Packed
with Spheres," ASME Journal of Fluids Engineering, Vol. 112, No. 1, pp. 84-88.

  Gratton, L. J., Travkin, V. S. and Catton, I., 1993, "Transport Coefficient Dependence upon Solid
Phase Morphology for Single Phase Convective Transport in Porous Media," Heat Transfer in
Porous Media, ASME HTD-Vol. 240, pp. 11-21.

  Heat Exchanger Design Handbook, 1983, Hemisphere Publishing Corporation, Vol. 1,2.

  Klenov, O. P. and Matros, Yu. Sh., 1990, "Effect of Loading Conditions on the Porosity and
Hydraulic Resistance of a Stationary Granular Bed," Theoretical Foundations of Chemical
Engineering, Vol. 24, No. 2, pp. 206-210.

  Koch, D. L. and Brady J. F., 1985, "Dispersion in Fixed Beds," Journal of Fluid Mechanics, Vol.
154, pp. 399-427.

  Kokorev, V. I., Subbotin, V. I., Fedoseev, V. N. et al., 1987, "On Interconnection of Hydraulic
Resistance and Heat Transfer in Porous Media," High Temperature, Vol. 25, No. 1, pp. 82-87.

  Kovalenko, Yu. A., 1991, "Thermal Conductivity in Disperse Porous Media: A Review of
Modeling Results in Soviet Research," Russian Journal of Engineering Thermophysics, Vol. 1, pp.
225-43.



27

  Nikuradse, J., 1950, "Laws of Flow in Rough Pipes," NACA TM 1292.

  Travkin, V. S., 1981, "Steady Free Convection in the Cavity With Variable Wall Temperature,"
Heat Exchange in Mono- and Bi-phase Media, Naukova Dumka, Kiev, pp.15-19.

  Travkin, V.S., 1984, "Numerical Simulation of Heat and Mass Transfer in a Continuous-Casting
Mold," High Temperature, Vol.22, No.2, pp.251-258.

  Travkin, V.S., 1985, "Numerical Integration of Free Convection Compressible Gas Equation in
Enclosed Cylindrical Cavity on Conjugated Statement," Numerical Methods of Continuous Medium
Mechanics, Vol.16, No.3, pp.128-152.

  Travkin, V.S., 1987, "Mathematical Simulation of Turbulent Diffusion of Admixtures in Boundary
Layer Over Rough Surfaces," Ph.D. Dissertation Abstracts, Kiev State University, Kiev, U.S.S.R.

  Travkin, V. and Catton, I., 1992a,"Turbulent Forced Transport Governing Equations in High
Permeability Medium," submitted to the Physics of Fluids, Sec A.

  Travkin, V. and Catton, I., 1992b, "Models of Turbulent Thermal Diffusivity and Transfer
Coefficients for a Regular Packed Bed of Spheres," Proceedings, 28th National Heat Transfer
Conference, San Diego, CA, ASME, HTD-Vol. 193, pp.15-23.

  Travkin, V. and Catton, I., 1992c, "The Numerics of Turbulent Processes in High Porosity
Nonuniform Porous Media," Proceedings, SIAM 40th Anniversary Meeting, Los Angeles,  CA,
pp.A36. 

  Travkin, V. S. and Catton, I., 1995, "A Two-Temperature Model for Turbulent Flow and Heat
Transfer in a Porous Layer," Journal of Fluids Engineering, Vol. 117, pp. 181-188.

  Tsuji, Y., Morikawa, Y. and Fujiwara, Y., 1985, "Pipe Flow with Solid Particles Fixed in Space,"
International Journal of Multi-phase Flow, Vol. 11, No. 2, pp. 177 - 188.

  Watanabe, H., 1989, "Drag Coefficient and Voidage Function on Fluid Flow through Granular
Packed Beds," International Journal of Engineering Fluid Mechanics, Vol. 2, No. 1, pp. 93-108.


