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Abstract:  
This paper aim is to fill the gap in the scaled description of Continuum Mechanics elasticity and 

elasticity in porous biomedia with phenomena taken for the two scale presentation. Both scales 

are of continuum mechanics media. Whereas the Fluid Mechanics problems in hard solid porous 

materials found a great reflection in studies and publications in the last ~30 years, the elastic 

porous media fluid mechanics has only one short part in publication in this area based on HSP-

VAT (Hierarchical Scaled Physics and Volume Averaging Theory). Meanwhile, the biomedia of 

all continuum mechanics scales that are not fluid(s) are the more or less ductile, heterogeneous, 

porous and elastic media.  

This is the first hard copy paper on the fundamentals of poroelasticity and momentum fluid 

transport in Heterogeneous continuum two-scale porous soft solid state media, biomedia 

phenomena theory and modeling. After presentation of the short review of works related to 

theoretical deductions of "scaled" mathematical formulations seeking dependencies between the 

strains and stresses on the scale of like "continuum" physics phenomena and of the larger "bulk" 

scale medium communication of properties, we outline the few conceptual formulations for the 

two-scale connection of fluid flow and elasticity properties for heterogeneous porous materials.  

Following the regular, commonly known path for formulation of Homogeneous medium fluid 

mechanics and elasticity governing equations we derive in the same way the correct momentum 

and poroelasticity governing equations for the Upper, bulk, scale in a Heterogeneous biomedium.  

 

Key words: heterogeneous media, polyscale, polyscale modeling, elasticity, heterogeneous 

elasticity, biomedia  

 

___________________________________________________________________________  

 

1. INTRODUCTION  

1.1. Historical Observation and Heterogeneous Continuum Mechanics Some Principal 

Provisions 

 

Most of the initial concepts and fundamental two-phase two-scale heterogeneous media 

elasticity, poroelasticity dependencies and governing equations were first obtained in 1994-96.  

Some of them were formulated during research on analytical and numerical simulation of two-

phase two-scale HSP-VAT problems in the Ukraine.  

We won't be analyzing here the theoretical, modeling trends in the solid state mechanics, 

particularly in the elasticity theory. We restrict ourselves with a few notes, because the 
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substantial layer of the research regarding studies in heterogeneous solid state mechanics have 

been published some years ago in [1].  

We wrote there: "The unfortunate fact in the contemporary common knowledge continuum 

mechanics - The Homogeneous Continuum Mechanics (HCM), is that the treatment of the 

Heterogeneous Media, Matters being performed as that they are being indistinguishable from the 

Homogeneous media treatment!  

In Continuum Mechanics through the last more than 40 years workers do not recognize the other 

then the accepted in HCM since ~50ths-60ths Homogeneous mathematical modes (not the 

theories we can name) by Beran, Hashin, Hill, among others and continued later in 70ths -- 

2000ths by Mura, Nemat-Nasser and Hori, we name just a few (many can be mentioned for their 

sizeable input) English writing authors, with the substantial influence as seems throughout the 

publications of others."  

Note that the ground for Heterogeneous formulations and studies does need to use the different 

mathematics for Heterogeneous media - Heterogeneous, Hierarchical mathematics of 

discontinued fields.  

The Detailed Micro-Modeling - Direct Numerical Modeling (DMM-DNM) method used 

predominantly now as the most "full and correct" method for the Upper scale heterogeneous 

porous media models, is mostly incorrect for this purpose. Especially, when the effective 

properties and the upper scale characteristics sought as the calculated ones based on these Lower 

Scale model's solution fields or when compared with experiment or sought to be used for 

experimental basics.  

The DMM-DNM is good for the Lower scale, but averaging and other operations for and over 

the Upper scale functions, operators, etc. done with the Homogeneous GO theorem are mostly 

wrong.  

On the other hand, we would like to state that the Homogeneous subject physics is just the 

genuine constituent part of the broader description of the Heterogeneous matter.  

Some parts from the above mentioned analytical materials, texts on solid state mechanics, fluid 

mechanics, elasticity theory for heterogeneous media can be seen with the references in the 

website - http://www.travkin-hspt.com. From those pertained to the solid state physics and solid 

state elasticity mechanics texts some recently were also published in the hard copy literature in 

[2-4].   

The Two scale HSP-VAT firstly obtained solutions, the exact ones for the most known common 

textbooks problems, can be seen in - 1) "Classical Problems in Fluid Mechanics" 

http://www.travkin-hspt.com/fluid/03.htm; 2) "Classical Problems in Thermal Physics" 

http://www.travkin-hspt.com/thermph/02.htm; 3) "Globular Morphology Two Scale Electrostatic 

Exact Solutions" http://www.travkin-hspt.com/eldyn/glob1.htm.  

Then were obtained after 2002 the two-scale HSP-VAT even the analytical solutions of the 

following classical problems: 4) "When the 2x2 is not going to be 4 - What to do?" 

http://www.travkin-hspt.com/eldyn/WhatToDo2.htm; 5) "Two Scale EM Wave Propagation in 

Superlattices - 1D Photonic Crystals" http://www.travkin-hspt.com/eldyn/photcrys1.htm; 6) 

"Two Scale Solution for Acoustic Wave Propagation Through the Multilayer Two-Phase 

Medium" http://www.travkin-hspt.com/acoustics/supercross.htm; 7) "Effective Coefficients in 

Electrodynamics" http://www.travkin-hspt.com/eldyn/edeffectivecoeff.htm .  

All these cornerstone (and other two-scale) problems have not been solved for Upper (second) 

Heterogeneous scale since the first half of the XX century by other methods (given in textbooks 
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the Lower Homogeneous scale "solutions" are wrongly attributed to the Upper Heterogeneous 

scale averaged fields). These solutions leave no chances for calculations or comparison with 

experiment of the Upper scale characteristics using the basis of Homogeneous GO. This has no 

sense, invalid for Heterogeneous problems. The experimental procedures used now are based on 

the homogeneous medium assumptions.  

 

1.2. Some Definitions of Scaling Related to the Subject of Continuum Physics and Modeling of 

Heterogeneous Media as Scaled Media  

 

In this publication we will be dealing with the problems of multiscale, heterogeneous, nonlocal 

and nonlinear character in elasticity for solid and soft solid media.  

In each technique employed now in the continuum mechanics elasticity science that has been 

developed through the periods from their conceptions in XX-th century, a number of 

assumptions and adjustments have been accepted that are so convenient in use that workers 

consider them as laws. This has been challenged through the last ~40+ years in different physical 

sciences, but solid state Hierarchical Scaled elasticity was researched and developed in 

underground because of the usual conservative mode of progress (bringing in the fundamental 

change in modi operandi) in physics, science generally.  

Most of these improvements can be referred to the proper, stricter treatment of collective, 

interactive phenomena while taking heterogeneous matter for study. To this kind of 

phenomena/changes we can relate almost any action or process more complicated than collision 

of "mathematical" ball onto the "mathematical" wall, or movement and collisions of two 

"mathematical" balls, meaning particles, atoms or molecules in MD.  

In all other nature prescribed cases the physical matters are of scaled or multiscale character by 

existence.  

There is no substance of physical content in our known universe that is not a heterogeneous one.  

The question is at what scale down the matter is still homogeneous? That answer we don't know 

yet. And taking the scale an Upper or Lower one, then we will have the Heterogeneous matter 

anyway.  

The volume of the earth can be considered as homogeneous at the galaxy mean scale, meanwhile 

for our human experiences the earth scale object is a huge heterogeneous one.  

Another example - the water which we can obviously consider as a homogeneous matter? While 

it is not, at an atomic and lower scales.  

As always, we need taking into account these physical characteristics of a matter description that 

always hold and are promoted for future description quality improvements, and sometimes for 

this quality change.  

Also, in physics there is no action or process that we can name a local one, unless we want to. 

Otherwise, we have to look into the point and what it means more strictly. Obviously, many 

actions or processes can be separated from their less important, at the moment or case, 

surroundings or/and forces. But that is always more or less an artificial choice. Also we don't 

know yet - what is or not the collective influence of the Lower Scale forces, because up to now 

we connect the scales by approximations with the help of appropriate coefficients. All the 

physical laws in the past have been developed in this way.  

In this paper we won't be concerned to the multiscale, heterogeneous, nonlocal and nonlinear 

properties in solid state elasticity related to scales that are smaller, than what is used as of the 

continuum mechanics scales group  ~(10
-7

 – 10
3
) m.  
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Even for these  ~ 10 orders of decimal magnitude the conventional homogeneous one scale 

physical theories provide mostly for the approximate or even ad-hoc adjusting mechanisms for 

the two-scale Bottom-Up scale communication, and that mode is to be re-entered in the current 

paper from the Bottom-Up and Top-Down interscale transport (communications) point of view. 

That says the connections of the scale inherited fields are of great significance/importance. We 

previously studied thoroughly in many sciences (fields) the contemporary homogeneous physics 

theories for heterogeneous matter and these reviews are referred below.  

The strictest definition for the different scale related fields communication - transformation we 

suggested in 2004 as the Scaleportation.  

Scaleportation is the means and procedures of the direct and strict "transformation" of data and 

processes at one scale to the data and processes of the neighboring Upper or Lower Scale. These 

interscale communications, scale transformations of data are performed mostly not by formulae 

using the coefficients as this is customary in homogeneous physics, but via using the interscale 

governing equations for the phenomena.  

Scaleportation has being performed over the all our two-scale solved the HSP problems 

mentioned in this text and in the website - http://www.travkin-hspt.com, as the simulation 

methods have been based on algorithms of analytical (exact) or numerical methods created for 

the direct Bottom-Up (BU) or Top-Down (TD) two-scale solutions.  

When more than 2 neighboring scales of physical fields are involved, we have introduced the 

definition of a Scaleleaping (or Leapscaling).  

At the same time, we compare and describe in some detail the true multiscaling mechanisms 

stemmed from the heterogeneous analogs of Gauss-Ostrogradsky theorem and scaled exact 

governing equations and solutions for classical homogeneous physical problems in different 

physical discipline fields that are under stable development path through the last more than 40 

years.  

It is known information that all interatomic forces and consequently the upper meso-scale 

continuum mechanics phenomena can be explained by electromagnetic forces if starting from the 

lower atomic scale physics.  

That means the attractive interactions named as the van der Waal forces (dipole-dipole and 

London) and hydrogen bonding, as well as Coulomb long range collective forces, in principle 

can be evaluated (and will be probably in the near future) via the field generating scaled (two 

scales [Sc] ) governing equations that are much more depicting and are of much more accurate 

description. Thus, and much more difficult in simulation than use of any kind of potentials, 

Lennand-Jones forces, for example.  

We won't count in the present report on the aether potential relating actions and forces. That 

restriction is obvious at the beginning of polyscale language that establishing for the upper 

continuum mechanics scales in elasticity of solid state via the undeniable examples, problem 

considered solutions, etc.  

It might help with the understanding of our approach to the more strict physically and 

mathematically description of many subjects of Heterogeneous, Scaled, and Hierarchical nature, 

made by nature itself from the atomic, molecular scale that the some knowledge of HSP-VAT 

(Hierarchical Scaled Physics - Volume Averaging Theory) can be of assistance.  

To look through, one might browse our previous studies and analytical reports in other areas 

where the Heterogeneous, multiphase, scaled media and phenomena are in the core of subject 

matter, while this should help in estimation of the present solid state Heterogeneous Continuum 

Mechanics field [5-17] other publications in HSP-VAT.  
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Some parts from the above mentioned analytical materials, texts have been published also in the 

hard copy literature, see references in the website -http://www.travkin-hspt.com.  

So far, as usual, in almost all the contemporary physics fields, but Fluid Mechanics and parts of 

Thermal physics, the tools and math used for Heterogeneous, Scaled, Hierarchical description 

are of the 30-50 years old, from the particle physics, statistical mechanics, and quantum 

mechanics when the spatial scales used are of ~(10
-5

 – 10
-15

) m  and less range.  

All these tools of the one scale, homogeneous physics and math, just examples, we have found - 

have been done with the governing equations that were derived with the use of homogeneous 

Gauss-Ostrogradsky theorem.  

While this is incorrect.  

It would be appropriate to remind to young readers, that the similar to present (beginning of 

XX1-st century) "multiscaling" campaign had happened in the 80-90s of the last century. Then 

professionals in numbers went into public conferences with claims for a near or almost solved 

problem of so called "structure-properties" relation. That could not happen, because there was no 

base for structure-properties phenomenology even. Actually it was, because the VAT started in 

1967, nevertheless, the true scaling VAT techniques, advanced mathematics, and solved 

hierarchical problems appeared only in 80-90s. With not much of interest from few professionals 

funded in the US and engaged at that time with HSP-VAT research.  

That is why the "fashion" for "structure-properties" developments on 80-90s (XX-th century) 

went away with no results, unlike any other fashion.  

 

2. FUNDAMENTALS OF THE THEORY  

2.1 Some principal provisions, conceptual definitions, concepts of scaling matter related to the 

subject of sub-continuum and continuum physics and modeling of Biological media as the scaled 

media with physical and mathematical rigor  

 

Principles of the Theory.  

 

1) Principle - Recognition of the fact - that at any scale the biological substance (medium, tissue, 

sample), a cell or sub-cellular organelles are the Polyphase Polyscale Heterogeneous media. At 

atomic scale, larger scale, or at some of the continuum scales.  

2) Principle - Recognition of the fact - that the structure and the specific "phase" content in a 

volume with biomedium are the fundamental facts controlling the function of the biomedia along 

with the environmental (boundary) conditions.  

3) Principle - Recognition or knowledge that - in this consideration the polyphase, polyscale 

studying of the subject - the biomedia sample, tissue, or the sub-cellular structure, organelle, for 

example, is the most accurate and revealing way of obtaining the facts, conclusions. This was 

and is one of the main methods - the reductionism (with inseparable up-scale the holism 

approach) to study the nature by physical and biophysical methods so far for many centuries.  

4) Principle - Recognition or knowledge of the fact - that for studying the polyphase matters, 

media the only correct way is to use the discovered in 60s - 80s methods, theorems of 

Hierarchical physics and mathematics: Hierarchical Scaled Physics - Volume Averaging Theory, 

those specifically were created and tuned throughout the last 40+ years for polyphase polyscale 

physical, biological matters. Of many other methods suggested for the Heterogeneous media 

theorizing, modeling and understanding, up to this time there is no one more fundamental and/or 

correct.  
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We won't discuss or comment on numerous schemes suggested for heterogeneous, physical, 

biological polyphase media in the last ~100 years, as the mixture theory, for example, because 

they openly use an inadequate or truly simplified physical and mathematical description of the 

problem. We also published numerous analytical texts in hard copy and the web publications on 

this issue.  

This fact is not objected or disputed by any professional, openly at least, for the last ~30 years. 

The complexity and educational policies are preventing professionals to acquire and employ the 

tools of HSP-VAT.  

One of the examples is the use of Gauss-Ostrogradsky (GO) theorem for deduction of governing 

equations for nearly 200 years in physics and other sciences. This theorem is valid only for a 

Homogeneous matter, that most of biologists even do not know and acknowledge. In hierarchical 

mathematics there are many alike theorems for the same purposes that have been developed and 

used during the last 40 something years.  

5) Principle of Physical "Holism" (PPH): A living entity (cell, bacterium, tissue, organ, etc.) 

should be considered as a system of no "open" physical omission. Meaning - THAT NO ONE 

FUNCTION, PHYSICAL MECHANISM, PHENOMENON MAY BE OMITTED FROM THE 

SET OF PROCESSES, PHYSICAL PHENOMENA THAT ARE PRESENT AND VITAL FOR 

FUNCTIONING OF THIS LIVING ENTITY - MAMMALIAN CELL, PROCARIOTIC CELL, 

PROTOZOA, SUB-CELLULAR STRUCTURE, A TISSUE WITH LIVE SUPPORT 

EXCHANGE, ORGAN, ORGANISM.  

According to this principle, biologists may not omit in their research, theoretical reasoning, 

modeling for the reasons of convenience, resource availability, any "reasonable" grounds to save 

money and/or labor, any known and important for functioning of live entity physical mechanism. 

As - no omission of phenomena occurring with soft solids, solids and fluids, polyfluids, particles 

in fluid, scaled fluids, elasticity of solid and soft solid biomedia, mass, energy, heat, momentum, 

electromagnetism describing phenomena, wave mechanics while studying, modeling, 

experimenting with the live systems.  

Simply because all of the physics mechanisms of known character are participating in functions 

of the live subject and inseparable from the other functions or mechanisms.  

The only admissible path in studying is to substitute the omitted phenomena by the simulating 

part of the same physical character with principally the same effectual action.  

 

Hierarchical Polyphase Polyscale Concepts for Biomedia Modeling.  

 

1) There is no physical phenomena, process, act that at the determined scale is not of the 

Volumetric character or is not consciously or sub-consciously understood and/or modeled with 

the Averaged phenomena of the sub-scale. Any point-like experiment or method, theory is about 

for accepting at first the premise that the point is formed by/after somehow averaging of the 

forces/movements/reactions etc. of the below scale physics. Mostly it is done implicitly, even 

sub-consciously, but this premise is present. The Top-Down sequence of physical phenomena is 

more accurate down to the sub-atomic scale particles, an aether in between the particles and 

some pertained to them phenomena.  

2) Any Heterogeneous media (Ht) biological sample is in reality a two scale, at least, physical 

entity that have continuous (meso-scale might be and often is not already continuous, but having 

discontinuous surfaces, dislocations and other imperfect soft solid state features) transport, 

physical field processes of a physical volumetric (averaged at some point) character.  
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3) Any mammalian, plant biomedium, tissue sample or cell or bacterial live cell in reality is a 

polyscale constantly with continuous transport processes physical volumetric (averaged at some 

point, not a "point") object (entity), that constitutes a challenge for theorizing and modeling its 

biological functions.  

4) It is not correct to study, model and make valuable definitive conclusions about the 

biomedium function when using only one scale physical and biological phenomenon(a) in a 

biosample taken into account. This is the situation now in biology and medicine. Contemporary 

experimental biological, medical investigations lack the ground and fundamental science, while 

applying the chemical reactions examination. Chemistry is itself of low understanding of 

integrative biomolecular mechanisms in a biomedium, tissue, cell, etc.  

5) The scale models constitute the separate spatial and temporal physical and mathematical 

models describing the functions of transport on the scale dependent phenomena in a biomedium.  

6) Scale dependent physical (biophysical), mathematical models are inherently communicative 

Up-and-Down the scales. The scale communication of physical properties has been named as a 

scaleportation of properties and characteristics in HSP-VAT.  

7) It is possible to commute the physical models and medium's properties at the neighboring 

scales of the biomedium with mathematical strictness using methods developed in HSP-VAT.  

8) Each scale developed Homogeneous models in a Ht medium based on Homogeneous 

presentation of this scale physical definitions and the field's governing equations can be 

connected more or less mathematically strictly to the neighboring next Up-scale or Down-scale 

models only (most strictly) via using the interscale mechanisms of HSP-VAT.  

9) The polyscale depiction of biomedium's functions, transport, models is the only correct 

approach for theoretical modeling and simulation, for experiments data reduction when the 

subject of analysis, theory, model, experiment is the polyscale physically object with the nature 

prescribed polyscaling of function - as the biological cell, cellular volume, tissue sample, etc.  

10) Any Homogeneous biophysical substance, biomedium, tissue or cellular sample is in reality 

also of the two scale, at least, the physical entity that have molecular, atomic, sub-atomic and 

continuous description of transport, physical field processes of a physical volumetric character. 

The averaging and scaleportation of molecular scale transport and phenomena Up- to the 

Continuum (one of the continuum) scale phenomena and Down- to the molecular, atomic scale, 

should be used with application of correct Hierarchical mathematics of discontinuous "broken" 

physical fields.  

11) At present, in the last approximately 27-29 years all the main physical fields, definitions and 

homogeneous governing equations have been reformulated and upgraded using methods of HSP-

VAT for acting in the heterogeneous subject matters, for Heterogeneous media of solids, solids 

and fluids, polyfluids, particles in fluid, scaled fluids, elasticity of solid and soft solid media, 

mass, heat, momentum, electromagnetism describing phenomena, wave mechanics, acoustical 

fields. That is now making available the polyscaling in the description and modeling the most 

obvious and important transport (live) phenomena in a biological medium.  

12) Advancements in the last 25 years in Hierarchical Scaled Physics - Volume Averaging 

Theory allowed to surpass inadequate, incomplete one scale homogeneous theories for averaging 

(mixing), "bulk" representing theories in almost every field of physics and biology. Now we can 

formulate the true polyscale Dynamics theories and models for biological objects and processes, 

Heterogeneous and polyscale by nature and fact.  

13) None of the concepts written above is on the lists of "advanced" programs formulated in the 

recent years (and in "new" formulations of disciplines) in academic, university, government 



Published by the Hierarchical Scaled Physics and Technologies (HSPT) 

Available online at http://travkin-hspt.com/biophysics 

______________________________________________________________________________ 

 

Copyright ©  HSPT – All rights reserved 

programs. And that is a signal of misleading development in the contemporary conventional 

Biology.  

 

2.2. The Local, Non-Local, and Scaled Metrics, Physical Fields, and Their Mathematical 

Formulation  

 

Claim 

It is known that for every physical discipline serious mathematical formulation and 

modeling should have been used the theorem by Gauss-Ostrogradsky (GO). This 

theorem formulates the connection in physical and mathematical sense via 

integration between the physical features, phenomena on the closing some volume 

continuous (outlined by us) surface and the phenomena within the embraced volume.  

That means, it was already implicitly included the definitions of the two spaces and the two 

coordinate systems - of the initial integration of volume and over the surface and of the limiting 

(going to collapse the surrounded volume) mathematical expression between both, in the 

development of this field mathematical equations and models at each of the spaces agreed for 

consideration.  

One is the scale that we perform the spatial integration - it theoretically can collapse into the 

point? But what is the point? What this point is representing?  

The point is the subject without dimension in any direction, if in Cartesian coordinates, other 3D 

systems of spatial coordinates.  

The lower scale (actually the same scale, but non-local) physics variables and properties then 

silently declared as irrelevant, unimportant - hereby we do not use, mention and mean that the 

point in our mathematical homogeneous formulation is actually the volume used in the GO 

theorem to obtain the current equation of interest. This approach is justified as soon as the matter 

assumed as of a homogeneous nature, because there are the mathematical theorems showing that 

the limit transitions when the size of a spatial domain collapses to an infinitely small one are 

presenting the properties of this domain in the selected internal point into which it collapses.  

Meanwhile, we know that physics give us the very small objects - that constitute the body of any 

material - all these objects consist of atom and molecules.  

That means, this conjecture for deduction of governing fundamental equations in physics via 

using the GO theorem where the volume should collapse to the volumeless point is defective.  

And this precludes acceptance of the GO theorem for really applying to any physical matter, 

materials consisting of the atoms and molecules.  

Because the GO theorem is mathematically valid for only Homogeneous matter - no atomic and 

molecular spatial Heterogeneity is accepted.  

This surprised "discovery" actually "known" for many decades, since XIXth century, when this 

approximation was starting to be used in Atomic era physics and chemistry at the beginning of 

XX century.  

There were voices of awareness of this approximation, incorrect for any heterogeneous, 

polyphase media and materials.  

Unfortunately, physicists (leading figures) in the past preferred not to notice this mathematical 

fact. Chemists followed the path.  
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Because it was convenient and because this "ignorance" gave the only chance to cover with some 

mathematical strictness of XIXth century the whole body of physical consideration, more or less 

strict "proof" of mathematical deductions related to Continuum Media (CM) mechanics.  

And most of the media have been accepted as continuum ones, even in chemistry - when it is 

"known" that any chemical substance, and biological substance and material are discontinuous 

matters due to existence of their atomic structure.  

More correctly is to say that in reality the more precise path for mathematical conventional 

deductions in physics was and is the way to consider the discontinuous function of physical 

substance of interest, when it is no way to do otherwise, because of the atomic structure of a 

matter.  

And at the same time, when any mathematical operations need to be performed for that physical 

material - the tool of operation is the Continuum conjecture - this matter, material is accepted as 

a continuous one.  

Following that premises physicists use the Homogeneous matter GO theorem and alike up to 

now in almost any physical theory. While this is incorrect.  

The most influential and important forces acting on all atomic and Upper scales of physical 

matter, material are the electromagnetic (EM) forces.  

We would accept with precautions in this paper the conventional classical set of Maxwell-

Heaviside-Lorenz-Lorentz's (MHLL) EM homogeneous matter governing equations and based 

on them observed results that brought in and were justified in the HCM. We won't discuss here 

their validity and meaning.  

Nevertheless, we have a prove that the electromagnetic phenomena mathematical expression 

governing equations used and discussed in many research areas of continuum media is an 

approximation of valid averaged sub-atomic MHLL governing equations - http://www.travkin-

hspt.com/eldyn/maxdown/maxdown.htm "What's Wrong with the Pseudo-Averaging Used in 

Textbooks on Atomic Physics and Electrodynamics for Maxwell-Heaviside-Lorentz 

Electromagnetism Equations".  

It would be appropriate, meanwhile, to mention that at present exist a few points of view 

regarding the alternative systems of electromagnetic phenomena developed by different 

researchers.  

There are also the non-local homogeneous media properties. Those also use the basis of 

integration, or averaging. Integration is taken as for the continuous functions. This legitimate 

base allows us to approach the variety of media, materials, but only the Homogeneous ones.  

For Heterogeneous media and materials there are exist the Heterogeneous Whitaker-Slattery-

Anderson-Marle (WSAM) type of theorems reminding the origin from the GO theorem. And the 

reason for the definitions of at least two scale spaces and physics became the pivotal one.  

This, in turn brings the problem of definitions for the point-like Lower and the point-like Upper 

scale physical fields. Consecutively, we need to define the non-local, averaged fields for stated 

Heterogeneous problems at their corresponding scales.  

We should obey to this original set of reasoning that was done two centuries ago in Physics and 

in Mathematics for the homogeneous media and translate it onto the heterogeneous, scaled 

media.  

The great issue in all of this is the connection, communication between the physics and 

properties of each of the two spaces.  
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While for the homogeneous medium this question is seems never surfaced and discuses with 

application of the atomic scale discontinuous matter fields, for Heterogeneous media we need to 

specify these definitions with the greater detail.  

After all, this is the key issue of scaling heterogeneous physics as it must work. Thus, we start 

with the definition of a point, a dot used in the mathematical formulation of physical problems.  

Definition 1 

At the known and assigned previously system of coordinates the point is the object 

with no dimension in any of the three coordinates, and this object has the descriptive 

features, which determine the location of that point in the assigned system of 

coordinates. The point located physical property of the material has this spatial point 

determined value.  

Following the GO theorem we now know that - if at any point with the coordinates inside of the 

problem's domain is known the functional dependency for a physical field, which in the most of 

physical sciences right now is the partial differential or just differential equation(s), then we 

imply that the domain which served for the derivation of this equation via the GO theorem was 

the domain of the Lower subspace - because in that theorem we start doing an integration over 

the finite volume and the finite surface(s).  

Now - this principle can be applied to the heterogeneous media, which means - that after the 

averaging provided according to the one of the WSAM theorems - we get the mathematical 

equation (dependency) of the higher (another) space. With the corresponding spatial 

dependencies and the topology of the physical spatial fields.  

 

 
 

Figure 1. Representative Elementary Volumes (REVs) REV1 and REV2 in a heterogeneous 
medium with the assigned points of representation (x1, x2) at the Upper scale physical space. The 
shape (volumetric form) of the REVs can be of not only spherical one. 

  

With the one substantial different feature - it cannot infinitely be reducing the size, the volume of 

this domain - because this volume needs to be kept with the most of descriptive features of the 

both (or more) phases inside of our spatial integration domain.  
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Definition 2 

The Upper Space point when connected to the Lower Scale Domain might reflect, 

determine, and establish the features of communications between the both space 

physics. These features can be of different physical description in accordance to their 

respected space physics definitions. And vise versa - the Higher Space point physics 

might control, govern, reflect, and determine in some ways the properties of the 

Lower Scale physical Domain.  

It is easier to discuss and argue the features of these definitions right now - after the number of 

problems in various disciplines of physics were solved in the said mode - when the Lower and 

Upper scale HSP-VAT governing equations were connected directly before and during their 

respected solutions - it has been shown by means of the two-scale solutions, especially with the 

exact two-scale solutions of some common textbooks known classical problems, see in [11] and 

in the above mentioned other web sections.  

 

2.3. Introductory to Polyscale Description in Physics and Technologies  

 

2.3.1. Hierarchical Scaled Volume Averaging Theory (HSVAT) introductory mathematical 

definitions, lemmas, and theorems  
The basic idea of hierarchical medium description and modeling is to recognize that the physical 

phenomena, mathematical presentation of those phenomena, and their models can be very 

different at even neighboring scales. In most of situations those are different even if phenomena 

themselves are similar or looking as identical, but the scales are different and the lower scale 

features should be transported to the upper level of description (or Top-Down) - Figure 1. With 

that action, the useful information from the lower scale physics would be added to the 

characteristics on the upper scale level.  

The following definitions were used in 90s in solid state heterogeneous media elasticity theory 

(HtET) as well as at the earlier times for other sciences dealing with the scaled heterogeneous 

problems. The studies by Kushch and co-authors [18-24] will be used here as the example, the 

only one in the history of HtET as of the consequences of an attempted cooperation with already 

established mechanic theorist for the studies on HtET, thermal physics and fluid mechanics with 

implication of the HSP-VAT methods and know-how. It is the useful comparison for establishing 

the guideline, the path in the Homogeneous elasticity theory that has been used anyway by 

Kushch throughout these 15-something years studying the subject of HtET with the 

homogeneous elasticity mechanics methods.   

The volume average value of one phase in a two phase composite medium  <s1(x)> in the REV 

and its fluctuations in various directions, its main physical and mathematical needs, definitions 

are determined, for example in [3-8,11-13], at first looking simple  

s1

x  s1


x  

s 1

x, s1  

1


.

 
The three types of two-phase medium averaging over the REV (Figure 1) function  f are defined 

by the following averaging operators arranged in the order of seniority  

f  f1
 f2

 s1 

f 1  1  s1 


f 2,  

where the phase averages are given by  
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f1
 s1  1

1

1

 f t,

x d  s1 


f 1,

 

f2
 s2  1

2

2

 f t,

x d  s2 


f 2,

 
and the two internal phase averaged functions are given by  

f
1



f 1 

1
1

1

 f t,

x d,

 

f
2



f 2 

1
2

2

 f t,

x d,

 

where 
1f  is an average over the space of phase one ΔΩ1 in the REV, 

2f  is an average over the 

second phase volume ΔΩ2 = ΔΩ – ΔΩ1, and <f> is an average over the whole REV. There are 

also important averaging theorems for averaging of the spatial  operator - heterogeneous 

analogs of Gauss-Ostrogradsky theorem. Those are plenty already since 70-80s [25-33]. The first 

few of them needed to average the field equations are the WSAM theorem (after Whitaker-

Slattery-Anderson-Marle) and the one is for the intraphase  averaging. The differentiation 

theorem for the intraphase averaged function reads  

f
1
 


f  1

1

Sw

 
f



ds1 ,

 
f  f 


f , f  1,  

where ∂Sw is the inner surface in the REV, 
1ds  is the second-phase, inward-directed differential 

area in the REV (
1ds  = 1n dS).  

The WSAM theorem sets the averaged operator ∇ in accordance with 

f1
 f1

 1


S12

 f


ds1 .

 

It can be shown that for the invariable morphology (<m>=const) of the medium the operator 

 
1

f  can be presented also as 

f
1
 f

1
 1

1

Sw

 f ds1,

 
when <m>=const. Meanwhile, the foundation for averaging made, for example, by Nemat-

Nasser and Hori [34] (and many others) is based on conventional homogeneous Gauss-

Ostrogradsky theorem (see pp.59-60 in [34]), not of its heterogeneous analogs as the WSAM 

theorem.  

The following averaging theorem has been found for the rot operator 
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  f1
   f1

 1


S12




ds1 f,

 
and as a consequence, the theorem for the intraphase average of ( ×f)  is found to be 

  f
1
   f

1
 1

1

S12




ds1 

f .

 
The averaged time derivative according to transport theorem forms in the heterogeneous medium 

the following mathematical equation for a phase one, for example,  

f

t 1
 

t
f1

 1


S12

 Vsf 


ds 1,

 
where vector Vs is the velocity of the interface surface ∂S12.   

 

2.3.2. Hierarchical Scaled Volume Averaging Theory (HSVAT) Operating Lemmas  
When the interface is fixed in space the averaged functions for the first and second phase (as 

liquid f and solid s, for example, or two-phase solid) within the REV and over the entire REV 

fulfill the following conditions, namely  

f  gf
 ff

 gf, af  a,
 

for the conditions of steady state phases  

f

t f


ff

t
,


f g

f



f f


g f,

 
where a - a constant, except for the differentiation condition  

1
f  and 

1
f , that is as written 

above in the two forms. 

 

There is an important difference in the definitions of averaged and fluctuation values in regards 

of their meaning and values in the REV comparing to definitions supported by Whitaker and co-

authors see, for example, in [32,35]. The treatment and interpretation of the averaged values 

inside of the REV are supported in the classical interpretation when a value, considered as an 

averaged inside of the Lower scale REV volume, is still the constant value within the same initial 

ground scale REV the assigned representation point x
u
 for the Upper scale description space. The 

more detail on that problem are given in [27,31,36]. These methods are supported and verified by 

the exact two--scale solutions that have been able for performing because of that.  

Some clearance to this difficult issue brings the concepts and formulation of the scaled problems 

in the two or more scales.  

The intrinsic type of averaging  
f

f  fulfill all four of the above conditions as well as the 

following four consequences 

 

f

f



f ,


f

f
 f 


f

f
 0,
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
f

g

f



f f


g f,


f

g

f



f f


g f  0.

 
At the same time, 

f
f  and f  do not fulfill neither the second of the averaging conditions for 

 
f

f , with equalities 

f  gf
 ff

 gf
, af

 a, af
 ma,

 
while for the stationary morphology spatial volumes  

f

t f


f f

t
,


f g

f



f f gf

,
 

nor the consequences of the other averaging conditions  

f

f
 m


f ,


f

f



f ,


f

f
 f 


f

f
 0,

 
f

g

f
 m


f f


g f,


f

g

f



f f


g f,

 
f

g

f



f f 


g 

f
 0.

 
At present, the models of transport phenomena in heterogeneous media when using the HSP-

VAT allow to treat media with the following features: 1) multi-scaled media; 2) media with non-

linear physical characteristics; 3) polydisperse morphologies; 4) materials with phase anisotropy; 

5) media with non-constant or field dependent phase properties; 6) transient problems; 7) 

presence of imperfect interface surfaces; 8) presence of internal (mostly at the interface) physico-

chemical phenomena, etc.  

More detail on the non-local VAT procedures and governing equations for different physical 

problems modeled in homogeneous media by linear mathematical physics equations can be 

found in publications [25-33,37] and many other. Meanwhile, features depicting closure, 

nonlinear theory, polyphysics applications, polyscale developments, exact solutions, etc. can be 

found only in the works like [27,31,38-43] and mainly in the website http://www.travkin-

hspt.com.  

 

2.4. Averaging, Scale Statements and Scaling Metrics in Homogeneous and Heterogeneous 

Media Applications  

 

When one would write the recognized in many sciences the convective diffusion equation in a 

homogeneous medium ΔΩf  
Cf

t
 V  Cf  Df2Cf,                     (1) 

and the following one obtained in HSP-VAT as for the Upper scale averaged physical properties 

convective diffusion equation in the same phase ΔΩf that is the  ΔΩf = ΔΩ – ΔΩs   

m
Cf

t
 1



Sw

 VsCf  


ds mU iCf   CfU i
f



 
    (2) 
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D f  mCf  D f  1


Sw

 Cf



ds 

 


Df



Sw

 Cf 


ds,

 
until recent times (80s) it was hardly to be noticed that these equations are perfectly connected 

and by not only similar notations for concentration and velocity fields, but through the physical 

scales interaction mainly.  

Comparison of Eq. (1) and one of the perfectly legitimate upper scale HSP-VAT heterogeneous 

medium mass transport Eq. (2) gives a ground for a number of observations which are critical for 

understanding and proper application of HSP-VAT scaled mathematical models. When one 

analyzes, for example, Eqs. (1) and (2) it should be up front a clear understanding of what does  

the global dependence through the interface of coefficient Df  mean ?  

 

1) Is this the piece-wise constant in each of the phase function? Is the jump condition present on 

an interface?  

2) Is this the piece-wise constant function with the relatively smooth but very thin transition 

layer of interface?  

3) The most important question is - Are those interface physics phenomena so important 

qualitatively or quantitatively that their influence should be found in the governing modeling 

equations ?  

 

The answers to these questions are laying mostly in the physics of another (smaller) scale and 

they are not ready for analysis in most of the problems.  

Studies of the two-scale problems in HSP-VAT [27,31,38-43,etc.] concerning the thermal 

macroscale physics and fluid mechanics in capillary and globular heterogeneous (porous) 

medium morphologies demonstrated that even when interface transport has no openly declared 

physical special features as, for example, surficial transport - longitudinal diffusion or 

adsorption, etc., the input of additional surficial and fluctuation terms in the upper scale VAT 

equations solutions can be significant, reaching the same order in magnitude in balance, as 

traditional diffusion, heat exchange or friction resistance terms input.  

That means - the another non-traditional scaled physical effects are exist and we need to take this 

into consideration when building the two (or more) scale physical model, experiment, optimize 

the structure.  

More importantly is to have the lower scale physics of the interface included in the upper scale 

governing equations when this physics is somehow different from physics of upper scale. In 

electrodynamics those are, for example, effects of polarization on interface surface, surficial 

longitudinal waves or current, surface plasmons, etc.  

Meanwhile, there is no other theory or approach which could include within itself the governing 

equations formulations of the physical phenomena from neighboring lower or upper scale 

description. We are not talking here about source terms inclusion. The source term inclusion 

provided usually in the form of some analytical formulae to describe an effect when there is the 
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lack of knowledge or resources, or no vital necessity in analyzing the coupled phenomena of 

different scales.  

The most sought after characteristics in heterogeneous media transport which are the effective 

transport coefficients, can be correctly determined using the conventional definition as  

for the steady-state solid two-phase effective diffusivity D
*
, for example, with the one of possible 

formulae  

qm  DC  D2C  D1  D2 1


1

 C d,

 
but only in the fraction of problems, even while employing the Detailed Micro-Modeling -- 

Direct Numerical Modeling (DMM-DNM) exact solution that evidently requires the volumetric 

correct averaging (VAT averaging). The issue is that in a majority of problems, as for 

inhomogeneous, nonlinear coefficients, for example, and in many transient problems having the 

two-field, two-phase DMM-DNM exact solution is not enough to find effective coefficients, 

because the formulation of correct formulae is beyond the homogeneous physics method tools.  

Thus, returning to Eqs. (1) and (2) it should be clear understanding that the representative point 

(RP) of physical field component in Eq. (1) is the dot point of approximate size ~10
3
[ηm

3
] (for 

our range of scales), which includes  0(10
6
) atoms for a substance with the low molecular mass. 

Then the reasonable representative elementary HSP-VAT volume (REV) at the upper scale for 

the Eq. (2) can be about (1÷10)[μm
3
]=(10

9
÷10

12
)[ηm

3
], including within itself the thousands of 

lower scale RP volumes together with their structural elements, etc. 
 

This REV volume would contain ~0(10
6
)×(10

9
÷10

12
) 0(10

15
) atoms, which is even for today's 

upper end high power supercomputers not a solvable MD problem. The important thing is that 

the algorithms of homogeneous MD techniques are integrating these volumetric effects 

incorrectly because of using the homogeneous GO theorem [2-3]. That means in a traditional 

homogeneous MD the Upper scale characteristics won't be analyzed properly anyway.  

 

Still, the main reason, why Eq. (2) together with the lower level micromodel (1) is the more 

correct tool to model the heterogeneous medium transport, is because it has the mechanisms 

(additional terms) which clear role is to connect physics of lower scale transport, often different 

from the upper scale, and morphology of the two-phase (or more) medium to its bulk effective 

properties and upper scale fields.  

It is essential to take into consideration the qualitative transformation of homogeneous 

conventional formulation of a process under investigation as, for example, the wave propagation 

problem into heterogeneous scaled (at least on two scales) problem as soon as the numerous 

structural objects which separate the phases are introduced by nature to the medium for any good 

reason.  

 

3. ELASTICITY OF SOLID HETEROGENEOUS MEDIA  

  

We can make an averaging of the stress and strain components in the two-phase heterogeneous 

media to get the "effective" ones by finding the volumetric integrals for the strain  ij kx  and 

stress  ij kx  tensors 
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 ij   1
V 

V

 ijxkdV,

 

ij   1
V 

V

ijxkdV,

 
where the REV volume V is written here in a convenient notation used in homogeneous physics.  

In the following introductory analysis of HSP-VAT formulations for elasticity theory for the 

two-scale heterogeneous media description, we would like to use the simple two-phase matrix-

particulate phases medium.  

 

3.1 Strain Averaged Over the Two Phases of Heterogeneous Media  

 

At first we would like to start from analysis and comparison of a few averaging operators used 

for integration within the heterogeneous medium while applying both theorems the Gauss-

Ostrogradsky and the WSAM.  

We use to compare some results by Kushch et al. [20-24] for heterogeneous medium elasticity 

when used the GO theorem while the need is to put into operation the WSAM theorem and 

following two-scale statements with integro-differential equations. Meanwhile, most of analysis 

now is given in [1] while some notes are published in [3].  

In the study by Kushch et al. [22] authors has a pure notion of a feature that can be called as the 

scaleblending, where the hypothesis suggested as such - the remote constant assigned as initial 

value strain tensor ij  which is in terms of averaged over the both phases, matrix m and 

particular phase p, value is  

 ij    ij m
  ij p

 m ijm
 1  m ijp


 

 m 1
2m

m

 ui,j  uj,i d  1  m 1
2p

p

 ui,j  uj,i d 
 

 m
2

1
m

m

 u  uTd 
 

 1m
2

1
p

p

 u  uTd 
 

 m
2

1
m

m

 ud  m
2

1
m

m

 uT
d 

 

 1m
2

1
p

p

 ud  1m
2

1
p

p

 uT
d 

 
when being written in the general form of phase averaged fields has 4 additional surficial terms  
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 1
2

um
 1


Swm

 udsm  1
2

umT  1


Swm

 udsm

T



 

 1
2

up
 1


Swp

 udsp  1
2

up

T
 1


Swp

 udsp

T

,

 
because  

1
m

m

 ud  um  1

m
um

 1

m
um

 1


Swm

 udsm ,

 

 

and only because and if the boundary conditions of equality of displacements 
wm wpS S 
u u  and 

traction vectors 
wm wp

m pS S
 

 
  n n  satisfied, which is not valid for many real technological 

materials, we have the simplification as soon as and only if we consider the strain tensor 

averaging ij ij ijm p
    ,  not the stress averaging ij ij ijm p

    .    

The simplification comes when we can write if displacements at the interface are equal  

1


Swm

 udsm   1


Swp

 udsp, 1


Swm

 udsm

T

  1


Swp

 udsp

T

,

 
and we continue to deduct  

 ij    ij m
  ij p


 

 1
2
um

  1
2

um
T  1

2
up

 1
2

up

T


 

 1
2
um

 up
 1

2
um

T  up

T


 

 1
2
 um

 up
 1

2
 um

T  up

T


 

 1
2
u  1

2
uT  1

2
u  uT 

 
now, only now we can use the GO theorem because in this expression the averaging is about the 

whole REV as for homogeneous medium without internal phase divide  

 1
2

1


Sio

 nuijds  1


Sio

 nuij

T
ds 

 

 1
2

1


Sio

 niuj  njui ds ,

 
as soon as  
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dsm  dsp, 1


Swm

 udsm   1


Swp

 udsp,

 
also we need to remember that 

um
 1


Smio

 udsm, up
 1


Spio

 udsp.

 
It is obtained the form of averaged strain in a full coincidence with the homogeneous elasticity 

theory because for this mathematical equation for strain there is no difference in expressions for 

both phases, the averaging is all over the bounding surface, and the interface surface 

w wm wpS S S      physics is of perfect bond. 

It can be written also via the surficial integrals of input-output mioS  and pioS  at the REV's 

bounding surface  ∂Sio = ∂Smio + ∂Spio ,that ij  can be expressed in these conditions of perfect 

bonds via 

 ij   1
2
 um

 up
 um

 up

T


 

 1
2

1


Smio

 udsm  1
2

1


Smio

 udsm

T



 

 1
2

1


Spio

 udsp  1
2

1


Spio

 udsp

T



 

 1
2

1


Smio

 numijdsm  1
2

1


Smio

 numij

T
dsm 

 

 1
2

1


Spio

 nupij
dsp  1

2
1


Spio

 nupij

T
dsp 

 

 1
2

1


Sio

 nuijds  1


Sio

 nuij

T
ds 

 

 1
2

1


Sio

 niuj  njui ds .

 
These mathematical deductions are the pure demonstrations of relationship between the 

homogeneous medium GO theorem and the WSAM theorem for heterogeneous medium.  

That is, when the two (or more) volumetric phases having the interfaces and their volumes are 

designated to the selected REV, the combined (bulk) mathematical expressions for acting in each 
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volume operator   can be, if summed, equal to the expressions obtained for the whole REV 

with the GO theorem. 

But only for the   operator acting in expressions without any phase coefficient, for selected 

cases and for perfect interface boundary conditions. 

Integration should be done only over the phase intersecting surfaces of bounding (outer) REV 

surface ioS  which is 

Sio  Smio  Spio, Sp  Swp  Spio, Sm  Swm  Smio,  

Swp  Swm  Sw,  
but not over all interfaces of the particles in the REV. That is the great difference with the 

Kushch's et al. [22] mathematics, see also in [1,3].  

And finally in the volumetric variables we have the formula for the strain averaged over the two 

phases  

 ij    ij m
  ij p

 1
2
 um

 up
 um

 up

T


 

 1
2
u  uT,  

while that is only because there are no physical properties assigned to the phases and the perfect 

interface BC were accepted.  

The general form of ij  when used the phase averaged fields and interface surface elasticity 

properties that are not of perfect traction and displacement conditions is 

 

 ij    ij m
  ij p

 m ijm
 1  m ijp


 

 1
2

um
 1


Swm

 udsm  1
2

umT  1


Swm

 udsm

T



 

 1
2

up
 1


Swp

 udsp  1
2

up

T
 1


Swp

 udsp

T

.

 
Note, that we never in need to use this averaging as a separate action from the physics' other 

aspects of the elasticity problem.  

The same can be said and on the averaging in Kushch et al. [20-24] and other works. 

Nevertheless, when averaged separately over each phase the strain averaged expressions are 

different.  

 

3.2 Strain Tensor Averaged Over the Matrix Phase  

 

Strain formulation equation over the matrix phase (in a two-phase medium) averaging is  

 ij m
 1

2
um

 1


Swm

 udsm 
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 1
2

umT  1


Swm

 udsm

T

,

 
well, if we recognize that  

um
 1


Smio

 udsm,

 
then we can write this tensor via the total its interface surface within the REV as the following  

 ij m
 1

2
1


Smio

 udsm  1


Swm

 udsm 
 

 1
2

1


Smio

 udsm

T

 1


Swm

 udsm

T



 

 1
2

1


Sm

 udsm  1
2

1


Sm

 udsm

T


 

 1
2

1


Sm

 numij  numij

T
dsm 

 

 1
2

1


Sm

 niuj  njui dsm ,

 
via the total interface surface m wm mioS S S     for the matrix phase.   

 

3.3 Strain Tensor Averaged Over the Particulate Phase  

 

When strain tensor has been averaged over the another (particulate, or of other morphology) 

medium it has the formulation  

 ij p
 1

2
up

 1


Swp

 udsp  1
2

up

T
 1


Swp

 udsp

T

,

 
then we can write this tensor via the total its bounding surface within the REV  

 ij p
 1

2
1


Spio

 udsp  1


Swp

 udsp 
 

 1
2

1


Spio

 udsp

T

 1


Swp

 udsp

T


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 1
2

1


Sp

 nupij
 nupij

T
dsp 

 

 1
2

1


Sp

 niuj  njui dsp ,

 
where the total bounding surface for the particulate phase p wp pioS S S     . 

Here the interface surface displacement averaged tensor 
ij S

u  is   

uij S
 1


Swm

 udsm  1


Swm

 nudsm  1


Swm

 numijdsm 
 

 1


Swm

 niuj
m

dsm.

 
 

3.4 Stress Tensor Averaging  

 

For the stress relation averaged over the two-phase ij  we should write the following 

mathematical expression as soon as  

ij   Cijkl
m kl

m  Cijkl
p kl

p   Cijkl
m kl

m 
m
 Cijkl

p kl
p 

p


 

 1


m

 Cijkl
m kl

m d  1


p

 Cijkl
p kl

p d 
 

if m

ijklC  and p

ijklC  are the constant matrixes as in most of the studies accepted, then 

 


Cijkl

m


m

 kl
m d  Cijkl

p 1


p

 kl
p d 

 
 

 Cijkl
m kl m

 Cijkl
p kl p


 

 1
2

Cijkl
m um

 1


Swm

 udsm  umT  1


Swm

 udsm

T



 

 1
2

Cijkl
p up

 1


Swp

 udsp  up

T
 1


Swp

 udsp

T



 

 1
2

Cijkl
m um

 umT  1


Swm

 udsm  1


Swm

 udsm

T


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 1
2

Cijkl
p up

 up

T
 1


Swp

 udsp  1


Swp

 udsp

T



 

 1
2

Cijkl
m um

 umT  1
2

Cijkl
m 1


Swm

 udsm  1


Swm

 udsm

T



 

 1
2

Cijkl
p up

 up

T
 1

2
Cijkl

p 1


Swp

 udsp  1


Swp

 udsp

T



 

 1
2

Cijkl
m um

 um
T  1

2
Cijkl

p up
 up

T


 
 

plus the 4 surficial terms that appeared as the result of WSAM theorem applied  

 1
2

Cijkl
m 1


Swm

 udsm  1


Swm

 udsm

T



 

 1
2

Cijkl
p 1


Swp

 udsp  1


Swp

 udsp

T



 

 1
2

Cijkl
m um

 um
T  1

2
Cijkl

p up
 up

T


 

 1
2
Cijkl

m  Cijkl
p  1


Swm

 udsm  1
2
Cijkl

m  Cijkl
p  1


Swm

 udsm

T


 

 

 1
2

Cijkl
m um

 um
T  1

2
Cijkl

p up
 up

T


 

 1
2
Cijkl

m  Cijkl
p  1


Swm

 udsm  1


Swm

 udsm

T

 ij .

 
 

Thus, we see here 4 more terms (last terms) than would not be expected in homogeneous CM.  

This is the final equation for the averaged over the two-phase stress tensor ij . 

The VAT expression for ij  generally as for two-phase medium can be written as 

ij   Cijkl
m kl

m  Cijkl
p kl

p   Cijkl
m kl

m 
m
 Cijkl

p kl
p 

p


 

 1


m

 Cijkl
m kl

m d  1


p

 Cijkl
p kl

p d 
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 1
2

Cijkl
m um

 um
T  1

2
Cijkl

p up
 up

T


 

 1
2
Cijkl

m  Cijkl
p  1


Swm

 udsm  1


Swm

 udsm

T

.

 
It is relevant to mention here, that because Kushch and co-authors [18-24] mostly avoid writing 

of the Lower scale elastic equations (EE) and use this assigned "singularity" circumventing 

artificial REVs - they artificially (for a purpose) derive formulae for 
kl  and ij  where there 

are no surficial terms at all. 

The example, we do here for the correct HSP-VAT stress averaging for the elasticity problem 

written for eucaryotic biocell's Nuclear Pore Complex (NPC) assembly depicted in [44] as for 

the polyphase medium of particulate nature, where all macromolecular complexes are of the 

same elastic properties (which is incorrect in general).  

When averaged over the whole REV the stress tensor for polyphase medium that all the phases 

averaging expressions are combined  

 

ij   1


m

 ij
d  1



N

q1


q

 ij
d 

 

 1


m

 Cijkl
 kl

 d  1


N

q1


q

 Cijkl
 kl

 d 
 

Cijkl
 1



N

q1


q

 kl
 d  Cijkl

 1


N

q1


q

 kl
 d 

 

 Cijkl
 1



m

 kl
 d 

Cijkl




N

q1


q

 kl
 d 

 

Cijkl
  Cijkl

  1


N

q1


q

 kl
 d  Cijkl

 1


m

 kl
 dV 

N

q1


q

 kl
 d 

 


Cijkl
 Cijkl





N

q1


q

 kl
 d  Cijkl

 kl  

 


Cijkl
 Cijkl





N

q1


q

 kl
 d 

 
 Cijkl

 kl   Cijkl
  Cijkl

 kl q
,

 
 

where  
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kl   1


m

 kl
 dV 

N

q1


q

 kl
 d ,

 
but only when there is no description of tensor fields is as in the Heterogeneous medium. Now 

one can continue with the deduction of the polyphase averaged stress Upper scale mathematical 

model as within the using tools of hierarchical physics description.  

At first, would apply the only notations of averaged strains, not of the formulation of these 

tensors through their own mathematical expressions using displacement vector u, one can have 

ij   1


m

 ij
d  1



N

q1


q

 ij
d 

 

 Cijkl
 kl m


N

q1

 kl q
 Cijkl

  Cijkl
 

N

q1

 kl q


 

 Cijkl
 kl m

 Cijkl


N

q1

 kl q
 Cijkl

  Cijkl
 

N

q1

 kl q


 

 Cijkl
 kl m

 Cijkl


N

q1

 kl q
,

 
where each separate particle or macromolecular assembly (nanoparticle) stress tensor is  

kl q
 1



q

 kl
 d,

 

here m is the subscript designating solid or soft solid matrix, liquid "matrix" or water solution 

medium volume all over the REV; N is the number of particles or macromolecular complexes, 

kl q
  is the strain tensor within the each q-th particle. 

 

This is the usual formula - the Homogeneous Elasticity Theory mathematical expressions (as in 

Kushch et al. [18-24] and other works) for the two-phase separately homogeneous medium.  

To introduce the Lower scale physics of atomic, molecular interactions it needs to agree with the 

addition of this scale physics phenomena with its physical and mathematical scale models.  

Next, when the hierarchical physics (HSP-VAT) applied to the two-phase particulate solid state  

problem, the formulae for averaged stress tensor ij   appeared as following 

ij   1
2

Cijkl
m um

 um
T  1

2

N

q1

 Cijkl
q uq

 uq

T


 
one cannot write here kl q

  already, because the averaged kl q
  means and additional surficial 

terms 
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 1
2

Cijkl
m 1


Swm

 udsm  1


Swm

 udsm

T



 

 1
2

N

q1

 Cijkl
q 1


Swq

 udsq  1


Swq

 udsq

T

,

 
 

It can be noticed that here there are the 2(N+1) additional surficial terms - that is the correct 

averaging for Heterogeneous media. 

 

3.5 Separately in Each Phase the Averaged Stress Tensor     

 

The following is the initial definition  

ij   Cijkl
m kl

m  Cijkl
p kl

p   Cijkl
m kl

m 
m
 Cijkl

p kl
p 

p


 

 1


m

 Cijkl
m kl

m d  1


p

 Cijkl
p kl

p d 
 

if m

ijklC  and p

ijklC  are constants as in all Kushch' studies, for example, in [18-24], then 

 


Cijkl

m


m

 kl
m d  Cijkl

p 1


p

 kl
p d 

 
 Cijkl

m kl m
 Cijkl

p kl p
.

 

Now in each phase - in matrix ij m
  is   

 

ij m
 Cijkl

m kl
m 

m
 Cijkl

m kl m


 

 1
2

Cijkl
m um

 umT  1


Swm

 udsm  1


Swm

 udsm

T

,

 

while in the particulate phase ij p
  is  

 

ij p
 Cijkl

p kl
p 

p
 Cijkl

p kl p


 

 1
2

Cijkl
p up

 up

T
 1


Swp

 udsp  1


Swp

 udsp

T

.

 
From this we can try to extract the effective stiffness coefficients 

ijklC  for the Upper scale two-

phase averaged stress ij    
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Cijkl
 kl   Cijkl

 1
2
 um

 up
 um

 up

T
 ij  

 
this left part which is written as in Homogeneous mechanics right side we equalize to the HSP-

VAT right part  

 1
2

Cijkl
m um

 um
T  1

2
Cijkl

p up
 up

T


 

 1
2
Cijkl

m  Cijkl
p  1


Swm

 udsm  1


Swm

 udsm

T

.

 

When assuming or determined the constant tensor 
ijklC  and 1ij    then we can write 

(following here [22] homogeneous treatment of heterogeneous problem) assigning the function 

for ij   
ijklC  with  1ij    

Cijkl
 

 

 1
2

Cijkl
m um

 um
T  1

2
Cijkl

p up
 up

T


 

 1
2
Cijkl

m  Cijkl
p  1


Swm

 udsm  1


Swm

 udsm

T

.

 
This expression has two additional last terms comparing to usually assumed in the HCM. And 

even in this simplification it is not equal to what homogeneous elasticity solution methods 

suggest [22,23] and references therein.  

 

4. EQUILIBRIUM ELASTICITY EQUATION (ELASTOSTATICS)  

 

The equilibrium elasticity equation (Elastostatics) averaged over the two-phase composite 

material with the accepted ideal junction between phases all over the interface surface will be as 

following 

  ij   0,  

  ij     ij m
 1


Swm

 ij   dsm 
 

  ij p
 1


Swp

 ij   dsp 
 

   ij m
   ij p

 1


Swm

 ij   dsm  1


Swp

 ij   dsp,

 
we have an elimination of the two integral terms here - those are the traction terms on the 

interface surfaces ∂Swm, ∂Swp because of the perfect contact conditions on the interface, while 

those terms won't be eliminated for numerous practical problems, 
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1


Swm

 ij   dsm  1


Swp

 ij   dsp  0,

 
and finally this simplified Upper scale elasticity equation can be written as  

  ij     ij   0,  
because of equality of interface traction BC (but only if the cracks or other discontinuities, if 

they exist, are having the equal tractions and normal vectors' nmi and npi are collinear) 

 

1


Swm

 ij   dsm  1


Swm

 nmi  ij dsm   1


Swp

 npi  ij dsp,

 
as soon as  

dsm  dsp, 1


Swm

 udsm   1


Swp

 udsp.

 
Further, we can create the Upper scale averaged equilibrium equation in its simplest form as  

0,ij   which becomes after using the above derived averaged fields of stress via 

displacement fields in both phases as  

  ij   0, 
or  

1
2

Cijkl
m   um

 um
T  1

2
Cijkl

p   up
 up

T


 

 1
2
Cijkl

m  Cijkl
p   1


Swm

 udsm  1


Swm

 udsm

T

 0.

 
The last two (four actually) terms are the surficial terms and as such present the tremendous 

interest for sold state mechanics as long as the physical effect at the interface in homogeneous 

elastic mechanics do not participate directly in the theory and in modeling. The boundary 

conditions are the boundary conditions, for the averaged upper scale physical and mathematical 

modeling even do not have them at all in homogeneous Continuum Mechanics.  

The very important point in the derivation of hierarchical upper scale equations in solid state 

(soft solid state) is that in almost any heterogeneous medium the interface conditions are not 

perfect, and the material properties formed not only bulk each phase physics, but and in 

substantial part by the morphology of the polyphasing.  

Taking this into account it is imperative to keep all terms in the modeling of upper scale 

elasticity equations, as for the stationary case in the following equation  

 

  ij     ij m
   ij p


 

 1


Swm

 ij   dsm  1


Swp

 ij   dsp 
 

 1
2

Cijkl
m   um

 um
T  1

2
Cijkl

p   up
 up

T

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 1
2
Cijkl

m  Cijkl
p   1


Swm

 udsm  1


Swm

 udsm

T



 

 1


Swm

 ij   dsm  1


Swp

 ij   dsp  0.

 
In this equation which is the "bulk" averaged over the two phases Upper scale heterogeneous 

media elastostatic equation we can find even larger amount of interface physical effect terms - 4 

surficial terms.  

And these terms are the main difference and purpose to study, discover and use in heterogeneous 

polyphase media physical effects that are present, physicists know about most of them, but 

unattainable neither for physical and mathematical modeling nor for study and simulation via the 

conventional homogeneous physics tools and methods, as we saw this via numerous examples 

from a variety of sciences and technologies - http://travkin-hspt.com/compos/index.htm 

"Composite Engineering"; http://travkin-hspt.com/eldyn/index.htm "Electrodynamics"; 

http://travkin-hspt.com/fluid/index.htm "Fluid Mechanics"; http://travkin-

hspt.com/thermph/index.htm "Thermal Physics"; etc.  

The history of mechanics, physical mechanics shows this struggle and search for solution for 

decades, if not for more than 100 years, since the discovery of the atomic structure of solid 

matters.  

But the most interesting is the interplay of each phase effective coefficients ,m p

ijkl ijklC C   for 

elasticity problem (meanwhile, those are not the same as the phase coefficients, and even not 

equal to the homogeneous "effective" coefficients), bulk material effective stiffness coefficient 

as in this case ,ijklC  and physical meaning and input by the surficial interface physics terms in 

the governing equations for the upper scale as we have shown in the introduction to this paper, 

are vital for assessment and design, for example, for the conductivity, diffusivity and momentum 

problems.  

It can be shown how using the same techniques that have been used for the phase upper scale 

averaged equations one can deduce and use the two-scale mathematical statements for the 

simulation and assessment of the steady-state two scale elasticity tasks.  

 

5. STATIC ELASTICITY OF SOFT SOLID HETEROGENEOUS POLYPHASE 

BIOMEDIA AS CYTOSKELETON, CELL, EXTRACELLULAR MATRIX (ECM), 

TISSUE, ETC.  

 

At present in biomechanics, biophysics application to medicine widely used by most of 

researchers the homogeneous theories that based on the concept of the homogeneous mixture for 

biomedia. We won't analyze and observe those approaches here in this paper. There are taken too 

many of assumptions and conjectures, see analysis in [1-4,17]. We take, instead, the polyphase 

polyscale HSP-VAT approach in this field.  

It is known to continuum mechanics, biophysics researchers that any physical field's within 

continuum mechanics governing equations deduction has been started with application of the GO 

theorem to the piece, volume of a material, matter under investigation. We have been researched 
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intensively on this subject in [12]. The hard copy publications [3,4] summarizes shortly the 

problematic (simply wrong) physics and mathematics of homogeneous elasticity theory used for 

heterogeneous materials, media.  

The matter is that the methods of HSP-VAT give the ability to model, simulate and make 

calculation practically of an exact nature, as long as we are able to figure out the morphology 

features, and we can do this at present in biology and medicine research.  

When the polyphase HSP-VAT applied to the static elasticity problem for biomedia with fluid 

component (phase) (m) the equation for averaged over the Upper scale medium stress tensor 

ij  as 

ij   Cijkl
m Vm

 Vm
T  1

2

N

q1

 Cijkl
q uq

 uq

T


 

where we cannot write here the strain tensor kl  as an averaged kj q
  already over the phase(s) 

q or m, because the averaged 
kj m
  and kj q

  means the existence of additional surficial terms  

Cijkl
m 1


Swm

 Vdsm  1


Swm

 Vdsm

T



 

 1
2

N

q1

 Cijkl
q 1


Swq

 udsq  1


Swq

 udsq

T

,

 

here used only the deviatory part ij  of the stress tensor 
f

ij ijp     I  in the fluid phase 

where 

ij  V  V  2Sij ,  
where V is the velocity while the deformation tensor ijS is 

 

Sij  1
2
V  V,

 
so in a fluid phase  

ij
f  pI  V  V,  

and where m

ijklC   (dynamic viscosity) and q

ijklC  are the stiffness tensors for phases q, when m 

is the subscript designating the liquid "matrix" or water solution (cytosol) medium volume all 

over the selected part within the biomedium, that is taken here for simplicity as the Newtonian 

fluid, while N is the number of elastic parts, organelles, for example, or macromolecular 

complexes, etc. To take into account the polyphase nature of cytosol there should be taken the 

one more scale down physics model.  

 

We have in all phase averaged equation here the  2(N+1) additional surficial terms - that is, the 

correct averaging for Heterogeneous media brings in the substantially different from the 

homogeneous elasticity equations.  
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For further one needs to turn to the static elasticity equation (elastostatics used here as the 

simplest form elasticity mathematical equation) for the selected part (phase) within the 

biomedium  

  ij  0,  
as in a polyphase medium. The modeling elasticity phenomena for the heterogeneous part of a 

biomedium demands the elastodynamics governing equations. The Upper scale equilibrium 

averaged over the two-phase m and N=1,  p-phase where the perfect BC for a displacement at the 

interface has been applied (just as an example) to the biomedium, will be in its simplest form 

 which becomes after using the above derived averaged fields of stress via the 

displacement field in soft solids and velocity field in a fluid phase as 

 

  Vm
 Vm

T  1
2

Cijkl
p   up

 up

T


 

  1


Swm

 Vdsm  1


Swm

 Vdsm

T



 
 

 1
2

Cijkl
p   1


Swp

 udsp  1


Swp

 udsp

T


 

pm
 1


Swm

 pdsm  0.

 
The phenomena of viscoelasticity that are truly pertained to the some part-subvolumes of interior 

of a biomedium like cell's skeleton, to the cell itself, to the cytoplasm as a whole for certain 

microorganisms and for locomotion, to the ECM, etc. must be accounted for by the two-scale, at 

least, models. The well studied and failed tasks in these fields are the viscoelastic properties of 

blood polyphase fluid, blood flow, other biomedia models, that are also the subject for scaled, 

polyphase, polyphysics concepts, modeling which should be followed by the scaled simulation. 

The basic concepts and viscoelastic, viscoplastic governing equations for heterogeneous media 

via HSP-VAT also have been developed in the 90s.  

 

6. ELASTODYNAMICS --- THE WAVE EQUATIONS IN HETEROGENEOUS SOLID 

STATE MEDIA  

 

We would start with the homogeneous media transient linear elasticity equation which reads as  

  ij  F  2u

t2
,

 
where F - is the body force per unit volume [(N/(m³))].  

Averaged over the REV for the upper scale presentation using the developed HSP-VAT methods 

for appropriate operators having place in the homogeneous equation brings this equation to the 

form  

  ij   F   2u

t2
,
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  ij   F    ij m
 1


Swm

 ij   dsm 
 

  ij p
 1


Swp

 ij   dsp  F 
 

   ij m
   ij p

 1


Swm

 ij   dsm 
 

 1


Swp

 ij   dsp  F   2u

t2


 

 m
2umm

t2
 m


t

1


Swm

 Vsqum 


ds m 
 

 m



Swm

 Vsq

t
um 



ds m 

 

p

2up p

t2
 p


t

1


Swp

 Vsqup 


ds p 
 

 

 p



Swp

 Vsq

t
up 



ds p ,  N

m3
,

 

where Vsq is the speed of displacement of q-th phase interface surface,   
1

N

wq wm

q

S S


    in this 

equation for matrix and particulate phase elasticity. Well, combining all these 
1

N

m q
q

 
 

 
  

separate terms averaged mathematics we got for the two-phase m and p (q=1) the averaged 

equation for upper scale 

 

1
2

Cijkl
m   um

 um
T  1

2
Cijkl

p   up
 up

T


 

 1
2
Cijkl

m  Cijkl
p   1


Swm

 udsm  1


Swm

 udsm

T


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 1


Swm

 ij   dsm  1


Swp

 ij   dsp  Fm
 Fp


 

 

 m  p
2umm

t2
 m  p 

t

1


Swm

 Vsqum 


ds m 
 

 

m  p 1


Swm

 Vsq

t
um 



ds m,

 

this equation is approximately valid only if the BC for displacement fields on the interface ∂Swm 

are as following 

 


dsm 


ds p , um  up, but nm|Swm

 np|Swp
.

 
 

In this equation which is the Upper scale averaged over the two phases elastodynamics equation 

we can find even bigger amount of interface physical effect terms - 6 surficial terms.  

 

Especially troublesome the upper scale EE will be when the imperfect BC of displacements 

wm wpS S 
u u   and traction vectors  

wm wp
m pS S
 

 
  n n  satisfied (that is the practical 

problems of usual outcome), in this equation which is the "bulk" averaged over the two phases 

elastodynamics equation we can find even bigger amount of interface physical effect terms - 10 

surficial terms with the different displacement vector field u and stress tensor fields (σij) should 

be enforced as in the following 

 

1
2

Cijkl
m   um

 um
T  1

2
Cijkl

p   up
 up

T


 

 1
2
Cijkl

m   1


Swm

 udsm  1


Swm

 udsm

T



 

 1
2
Cijkl

p   1


Swp

 udsp  1


Swp

 udsp

T


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 1


Swm

 ij   dsm  1


Swp

 ij   dsp  Fm
 Fp


 

 m
2um

t2
 p

2up

t2
 m 

t

1


Swm

 Vsqum 


ds m 
 

p 
t

1


Swp

 Vsqup 


ds p 
 

 m


Swm

 Vsq

t
um 



ds m 
 

 p 


Swp

 Vsq

t
up 



ds p .

 
Completely different amount of possibilities and the new physical effects right now is presented 

(after 17-18 years of waiting period whether other workers might be able to advance the Ht 

Continuum Mechanics toward heterogeneous treatment techniques) for researchers in HtCM.  

 

7. MASS AND MOMENTUM TRANSPORT IN POROUS PART OF SOFT BIOMEDIA  

  

In homogenous media the physical and mathematical models used by theoretical biologists and 

workers from all over medical sciences are taken from conventional Homogeneous physical 

disciplines. There are many thousands of this kind of studies exist. We would be concerned here 

only with a few well known in heterogeneous physics methods for description of these 

enumerated above transport phenomena for biomedia, which is simply more complicated media 

and phenomena in those, but the basis of modeling should be the same for any heterogeneous 

processes because mathematics is the universal language science.  

We have done substantial research and writing in the 80-90s in these Continuum Mechanics 

disciplines for HSP-VAT clarification. The theoretical developments were suggested and many 

problems were solved firstly as the two-scale ones, even analytically, for example in [11]. 

Summaries and further ideas with progress in theories and solutions while communicating to 

other physical sciences can be found in our [45] with cited publications.  

The transport momentum equations within the separate porous part of biomedium's region is 

based on a creep flow using the fluid dynamics laminar flow equations with the permeable 

interface surface ∂Sw between the phases (for the two phases), or a number of interface surfaces  

∂Swq for multiple phases accounted for.  

The half-linear momentum linear equations for the each "fluid" phase at the Lower still 

continuum scale have the form  

V  0,  
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
f

V

t
 V  V  p  2V,

 

where the nonlinear term ( ) can be easily dropped in the momentum equation for some 

cases except strictly for some blood flow in a larger vasculature vessels.  

Now, one can write down the Upper scale averaged "fluid" dynamics equations. The first is  

V f
 1



Sw

 U i 


ds 0,

 
with the second filtration term; while the momentum equation for the "fluid" phase (cytosol's 

part, for example)  


f m V

t
 1



Sw

 VsV 


ds mV  V  V 1


Sw

 V


ds 

 

  U iU i f  1


Sw

 VV 


ds 

 

 m

p  1



Sw

 p


ds    mV 

 
 

  1


Sw

 V 


ds  


Sw

 V 


ds.

 
Of course, to these two-scale equations one must add others for the energy and/or heat (other 

character) transport for each of the "phase", whatever is more relevant to the studied task.  

These types and great number of modeling heterogeneous mathematical equations are not known 

for use in biology. Unfortunately, the education and other obvious reasons hinder the penetration 

of these modeling concepts to knowledge base of biological and medicine practices.  

One of the latest examples is the series of models suggested and studied in the monograph [46] 

where in the first most realistic and advanced chapter by Nakayama et al. [47] one can find the 

sets of governing equations that cannot be found as the correct modeling equations and as well 

the modeling equations for heterogeneous (porous) media in the other whole book chapters.  

 

8. POROELASTICITY OF SOFT BIOMEDIA, POLYMERS WITH FLUID 

MECHANICS IN THE BIOPOROUS TWO-SCALE MEDIA  

 

To present the two-phase two-scale bioporous media governing equations for both scales, 

because the one scale modeling and data reduction won't be able to find the Upper scale - whta 

usually researchers need indeed, while the modeling and simulation for both scale is the only 

solution that can reveal the interconnection of local and non-local, sometimes depending on 

boundary conditions on the Upper and sometimes the primary interest lays with the input from 

Lower scale boundary conditions.  
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The initial governing equations for incompressible fluid at the lower scale homogeneous media  

 

V  0, in f,  
 


f

V

t
 V  V  p  2V,

 
followed from  

ij
f  pI  V, in f,  

 

where also the boundary conditions at the lower scale interface  

 

V  u

t
, on f  s  Sw,

 
 

n ij
f  n ij

s , on f  s,  
while in the soft solid homogeneous phase the elasticity homogeneous equation is  

 

  ij
s   F   2u

t2
, in s.

 
 

Using the above advanced upper scale governing equations one has for fluid and solid phase 

equations of flow and conjugated elasticity equation  

V f
 1



Sw

 U i 


ds 0,

 
 


f m V

t
 1



Sw

 VsV 


ds mV  V  V 1


Sw

 V


ds 

 

  U iU i f  1


Sw

 VV 


ds 

 

 m

p  1



Sw

 p


ds    mV 

 

  1


Sw

 V 


ds  


Sw

 V 


ds.

 
 

and in soft solid phase (matrix)  
1
2

Cijkl
m   um

 um
T 
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 1
2
Cijkl

m   1


Swm

 udsm  1


Swm

 udsm

T



 
 

 1


Swm

 ij   dsm  Fm


 
 

 m
2um

t2
 m 

t

1


Swm

 Vsqum 


ds m 
 

 

 m


Swm

 Vsq

t
um 



ds m.

 
This set of general two-scale two-phase equations for poroelastic momentum transport is 

published for the first time, meanwhile this modeling statement is the one so important that 

without it correctly cannot be studied most of the biomedia dynamics problems - neither 

acoustics nor any dynamics of air, blood or lymph in human tissues, organs. In other our works, 

publications these 6 two-scale two-phase fluid mechanics, poroelasticity governing equations can 

be found in numerous versions and application solutions. These equations should be considered 

as the initial principal set of equations for the two-scale two-phase fluid mechanics, 

poroelasticity phenomena in porous solids, porous soft solids, in any biomedium that is not 

completely fluid. The first versions of this theory have been developed in the 90s.  

 

9. CONCLUSIONS  

 

We have shown in this paper for the first time the obtained in 1994-95 short, but rather full path 

to derivation of the two-scale (local-nonlocal) mathematical formulation for the porous phase 

fluid transport and elasticity in the soft solid phase of heterogeneous, polyphase biomedia.  

Obtained the two-scale models are much more complex than the homogeneous one scale media 

poroelasticity mathematical models and their statements. Nonetheless, they are only correct for 

Heterogeneous media, more physically descriptive and useful as it is shown during the many 

years developments in other physical disciplines such as fluid mechanics, thermal physics, 

acoustics, electrodynamics, heterogeneous mathematics, atomic scale physics, nuclear physics, 

and their numerous applications in engineering sciences, biological sciences, technologies.  

Here is presented as the two-scale, at least, models interconnected narrative, where the Lower 

scale models are of familiar from the major physical disciplines description with the 

homogeneous fields that are formulated as homogeneous mathematical statements. Meanwhile, 

the upper second scale modeling formulation for the porous media fluid flow and elasticity 

physical processes mentioned above have been developed for many years already, used for 

studies, obtained the results unattainable with the one scale homogeneous physics.  
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Now the tools and methods of HSP-VAT are available in the area of conjugated fluid flow and 

poroelasticity in heterogeneous and scaled media as solid state and soft solid matter, biomedia.  
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